Exemplo n.º 1
0
    def __init__(self,
                 name,
                 l2_regularization=None,
                 summary_labels=None,
                 device=None):
        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='module',
                                         argument='name',
                                         value=name)
        # l2_regularization
        if l2_regularization is not None and not isinstance(
                l2_regularization, float):
            raise TensorforceError.type(name='module',
                                        argument='l2_regularization',
                                        value=l2_regularization)
        if l2_regularization is not None and l2_regularization < 0.0:
            raise TensorforceError.value(name='module',
                                         argument='l2_regularization',
                                         value=l2_regularization)
        # summary_labels
        if summary_labels is not None and \
                not all(isinstance(label, str) for label in summary_labels):
            raise TensorforceError.type(name='module',
                                        argument='summary_labels',
                                        value=summary_labels)
        # device
        # ???

        # Attributes specified via constructor arguments
        self.name = name
        self.l2_regularization = l2_regularization
        self.summary_labels = None if summary_labels is None else set(
            summary_labels)
        self.device = device

        # Otherwise inherit arguments
        if self.l2_regularization is None:
            self.l2_regularization = Module.inherit_l2_regularization
        if self.summary_labels is None:
            self.summary_labels = Module.inherit_summary_labels

        # Internal attributes
        self.parent = None
        self.scope = None
        self.is_subscope = None
        self.modules = OrderedDict()
        self.trainable_modules = OrderedDict()
        self.is_initialized = False
        self.variables = None
        self.trainable_variables = None
        self.regularized_variables = None

        if not Module.is_add_module:
            Module.global_scope = list()
            Module.global_tensors_spec = OrderedDict()
Exemplo n.º 2
0
    def __init__(self, name, device=None, summary_labels=None, l2_regularization=None):
        # Internal attributes
        self.parent = Module.set_parent
        # self.scope = None
        self.is_subscope = None
        self.modules = OrderedDict()
        self.trainable_modules = OrderedDict()
        self.saved_modules = OrderedDict()
        self.is_initialized = False
        self.variables = None
        self.trainable_variables = None
        self.saved_variables = None
        self.output_tensors = None
        self.query_tensors = None
        self.available_summaries = None

        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='module', argument='name', value=name)
        # summary_labels
        if summary_labels is not None and \
                not all(isinstance(label, str) for label in summary_labels):
            raise TensorforceError.value(
                name='module', argument='summary_labels', value=summary_labels
            )
        # device
        # ???

        self.name = name
        self.device = device
        if summary_labels is None:
            # Otherwise inherit arguments
            self.summary_labels = Module.inherit_summary_labels
        elif summary_labels == 'all':
            self.summary_labels = summary_labels
        else:
            self.summary_labels = set(summary_labels)

        if not Module.is_add_module:
            Module.global_scope = list()
            Module.global_tensors_spec = OrderedDict()

        if Module.inherit_l2_regularization is None and l2_regularization is None:
            self.l2_regularization = None  # otherwise infinite recursion
        elif l2_regularization is not None:
            from tensorforce.core import parameter_modules
            self.l2_regularization = None  # for first module
            self.l2_regularization = self.add_module(
                name='l2-regularization', module=l2_regularization, modules=parameter_modules,
                is_trainable=False, dtype='float'
            )
        else:
            # Otherwise inherit arguments
            self.l2_regularization = Module.inherit_l2_regularization
Exemplo n.º 3
0
    def add_placeholder(self, name, dtype, shape, batched, default=None):
        # name
        name = name + '-input'
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='placeholder',
                                         argument='name',
                                         value=name)
        # dtype
        if not util.is_valid_type(dtype=dtype):
            raise TensorforceError.value(name='placeholder',
                                         argument='dtype',
                                         value=dtype)
        # shape
        if not util.is_iterable(x=shape) or \
                not all(isinstance(num_dims, int) for num_dims in shape):
            raise TensorforceError.type(name='placeholder',
                                        argument='shape',
                                        value=shape)
        elif not all(num_dims > 0 for num_dims in shape):
            raise TensorforceError.value(name='placeholder',
                                         argument='shape',
                                         value=shape)
        # batched
        if not isinstance(batched, bool):
            raise TensorforceError.type(name='placeholder',
                                        argument='batched',
                                        value=batched)
        # default
        if default is not None:
            if batched:
                raise TensorforceError.unexpected()
            elif not isinstance(default, tf.Tensor):
                raise TensorforceError.unexpected()
            elif util.dtype(x=default) != dtype:
                raise TensorforceError.unexpected()

        # Placeholder
        if batched:
            shape = (None, ) + shape
        if default is None:
            dtype = util.tf_dtype(dtype=dtype)
            placeholder = tf.placeholder(dtype=dtype, shape=shape, name=name)
        else:
            # check dtype and shape !!!
            placeholder = tf.placeholder_with_default(input=default,
                                                      shape=shape,
                                                      name=name)

        return placeholder
Exemplo n.º 4
0
    def get_module_class_and_kwargs(
        name, module=None, modules=None, default_module=None, disable_first_arg=False, **kwargs
    ):
        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='Module.add_module', argument='name', value=name)
        # module
        # ???
        # modules
        if modules is not None and not isinstance(modules, dict):
            raise TensorforceError.type(
                name='Module.add_module', argument='modules', dtype=type(modules)
            )
        # default_module
        # ???
        if isinstance(module, dict):
            # Dictionary module specification (type either given via 'type' or 'default_module')
            util.deep_disjoint_update(target=kwargs, source=module)
            module = kwargs.pop('type', default_module)
            return Module.get_module_class_and_kwargs(
                name=name, module=module, modules=modules, default_module=default_module,
                disable_first_arg=True, **kwargs
            )

        elif isinstance(module, str):
            if os.path.isfile(module):
                # JSON file module specification
                with open(module, 'r') as fp:
                    module = json.load(fp=fp)
                return Module.get_module_class_and_kwargs(
                    name=name, module=module, modules=modules, default_module=default_module,
                    disable_first_arg=True, **kwargs
                )

            elif '.' in module:
                # Library module specification
                library_name, module_name = module.rsplit('.', 1)
                library = importlib.import_module(name=library_name)
                module = getattr(library, module_name)
                return Module.get_module_class_and_kwargs(
                    name=name, module=module, modules=modules, default_module=default_module,
                    disable_first_arg=True, **kwargs
                )

            elif modules is not None and module in modules:
                # Keyword module specification
                return Module.get_module_class_and_kwargs(
                    name=name, module=modules[module], default_module=default_module,
                    disable_first_arg=True, **kwargs
                )

            elif 'default' in modules or default_module is not None:
                # Default module specification
                if '_first_arg' in kwargs:
                    raise TensorforceError.invalid(name='Module.add_module', argument='_first_arg')
                if module is not None:
                    if disable_first_arg:
                        raise TensorforceError.value(
                            name='Module.add_module', argument='module', value=module
                        )
                    kwargs['_first_arg'] = module
                if default_module is None:
                    default_module = modules['default']
                return Module.get_module_class_and_kwargs(
                    name=name, module=default_module, modules=modules, **kwargs
                )

            else:
                raise TensorforceError.value(
                    name='Module.add_module', argument='module', value=module
                )

        elif not callable(module) and ('default' in modules or default_module is not None):
            # Default module specification
            if '_first_arg' in kwargs:
                raise TensorforceError.invalid(name='Module.add_module', argument='_first_arg')
            if module is not None:
                kwargs['_first_arg'] = module
            if default_module is None:
                default_module = modules['default']
            return Module.get_module_class_and_kwargs(
                name=name, module=default_module, modules=modules, **kwargs
            )

        elif callable(module):
            # for key, arg in kwargs.items():
            #     assert arg is not None, (key, arg)
            #     if arg is None:
            #         assert False
            #         kwargs.pop(key)
            first_arg = kwargs.pop('_first_arg', None)
            return module, first_arg, kwargs

        else:
            raise TensorforceError.value(name='Module.add_module', argument='module', value=module)
Exemplo n.º 5
0
    def add_variable(
        self, name, dtype, shape, is_trainable, initializer='zeros', is_saved=True, summarize=None,
        shared=None
    ):
        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='Module.add_variable', argument='name', value=name)
        elif name in self.variables:
            raise TensorforceError.exists(name='variable', value=name)
        # dtype
        if not util.is_valid_type(dtype=dtype):
            raise TensorforceError.value(name='Module.add_variable', argument='dtype', value=dtype)
        # shape
        if not util.is_iterable(x=shape) or not all(isinstance(dims, int) for dims in shape):
            raise TensorforceError.value(name='Module.add_variable', argument='shape', value=shape)
        elif not all(dims > 0 for dims in shape):
            raise TensorforceError.value(name='Module.add_variable', argument='shape', value=shape)
        # is_trainable
        if not isinstance(is_trainable, bool):
            raise TensorforceError.type(
                name='Module.add_variable', argument='is_trainable', dtype=type(is_trainable)
            )
        elif is_trainable and dtype != 'float':
            raise TensorforceError.value(
                name='Module.add_variable', argument='is_trainable', value=is_trainable,
                condition='dtype != float'
            )
        # initializer
        initializer_names = (
            'normal', 'normal-relu', 'orthogonal', 'orthogonal-relu', 'zeros', 'ones'
        )
        if not isinstance(initializer, (util.py_dtype(dtype=dtype), np.ndarray, tf.Tensor)) and \
                initializer not in initializer_names:
            raise TensorforceError.value(
                name='Module.add_variable', argument='initializer', value=initializer
            )
        elif isinstance(initializer, np.ndarray) and \
                initializer.dtype != util.np_dtype(dtype=dtype):
            raise TensorforceError.type(
                name='Module.add_variable', argument='initializer', dtype=type(initializer)
            )
        elif isinstance(initializer, tf.Tensor) and util.dtype(x=initializer) != dtype:
            raise TensorforceError.type(
                name='Module.add_variable', argument='initializer', dtype=type(initializer)
            )
        # is_saved
        if not isinstance(is_saved, bool):
            raise TensorforceError.type(
                name='Module.add_variable', argument='is_saved', dtype=type(is_saved)
            )
        # summarize
        if summarize is not None and not isinstance(summarize, bool):
            raise TensorforceError.type(
                name='Module.add_variable', argument='summarize', dtype=type(summarize)
            )
        # shared
        if shared is not None and not isinstance(shared, str):
            raise TensorforceError.type(
                name='Module.add_variable', argument='shared',dtype=type(shared)
            )

        variable = None

        if shared is not None and len(self.graph.get_collection(name=shared)) > 0:
            # Retrieve shared variable from TensorFlow
            collection = self.graph.get_collection(name=shared)
            if len(collection) > 1:
                raise TensorforceError.unexpected()
            variable = collection[0]

        else:
            tf_dtype = util.tf_dtype(dtype=dtype)

            # Variable initializer
            if isinstance(initializer, util.py_dtype(dtype=dtype)):
                initializer = tf.constant(value=initializer, dtype=tf_dtype, shape=shape)
            elif isinstance(initializer, np.ndarray):
                if initializer.shape != shape:
                    raise TensorforceError.mismatch(
                        name='Module.add_variable', value1='shape', value2='initializer'
                    )
                initializer = tf.constant(value=initializer, dtype=tf_dtype)
            elif isinstance(initializer, tf.Tensor):
                if util.shape(x=initializer) != shape:
                    raise TensorforceError.mismatch(
                        name='Module.add_variable', value1='shape', value2='initializer'
                    )
                initializer = initializer
            elif not isinstance(initializer, str):
                raise TensorforceError("Invalid variable initializer: {}".format(initializer))
            elif initializer[:6] == 'normal':
                if dtype != 'float':
                    raise TensorforceError(
                        message="Invalid variable initializer value for non-float variable: {}.".format(
                            initializer
                        )
                    )
                if initializer[6:] == '-relu':
                    stddev = min(0.1, sqrt(2.0 / util.product(xs=shape[:-1])))
                else:
                    stddev = min(0.1, sqrt(2.0 / (util.product(xs=shape[:-1]) + shape[-1])))
                initializer = tf.random.normal(shape=shape, stddev=stddev, dtype=tf_dtype)
            elif initializer[:10] == 'orthogonal':
                if dtype != 'float':
                    raise TensorforceError(
                        message="Invalid variable initializer value for non-float variable: {}.".format(
                            initializer
                        )
                    )
                if len(shape) < 2:
                    raise TensorforceError(
                        message="Invalid variable initializer value for 0/1-rank variable: {}.".format(
                            initializer
                        )
                    )
                normal = np.random.normal(size=(util.product(xs=shape[:-1]), shape[-1]))
                u, _, v = np.linalg.svd(a=normal, full_matrices=False)
                orthogonal = u if u.shape[1] == shape[-1] else v
                if initializer[10:] == '-relu':
                    orthogonal = orthogonal * sqrt(2.0)
                initializer = tf.constant(value=orthogonal.reshape(shape), dtype=tf_dtype)
            elif initializer == 'zeros':
                initializer = tf.zeros(shape=shape, dtype=tf_dtype)
            elif initializer == 'ones':
                initializer = tf.ones(shape=shape, dtype=tf_dtype)

            # Variable
            variable = tf.Variable(
                initial_value=initializer, trainable=is_trainable, validate_shape=True, name=name,
                dtype=tf_dtype, shape=shape
            )

            # Register shared variable with TensorFlow
            if shared is not None:
                self.graph.add_to_collection(name=shared, value=variable)

        # Register variable
        self.variables[name] = variable
        if is_trainable:
            self.trainable_variables[name] = variable
        if is_saved:
            self.saved_variables[name] = variable

        # Add summary
        if (summarize is None and is_trainable) or summarize:
            variable = self.add_summary(
                label='variables', name=name, tensor=variable, mean_variance=True
            )
            variable = self.add_summary(label='variables-histogram', name=name, tensor=variable)

        return variable
Exemplo n.º 6
0
    def initialize(self):
        # Check whether module is already initialized
        if self.is_initialized:
            raise TensorforceError(message="Module is already initialized.")

        # Set internal attributes
        self.is_initialized = True
        self.variables = OrderedDict()
        self.trainable_variables = OrderedDict()
        self.saved_variables = OrderedDict()
        self.output_tensors = dict()
        self.query_tensors = dict()
        self.available_summaries = set()

        if self.parent is None:
            Module.global_scope = list()
            Module.while_counter = 0
            Module.cond_counter = 0

            # Global timestep
            self.global_timestep = self.add_variable(
                name='global-timestep', dtype='long', shape=(), is_trainable=False,
                initializer='zeros', shared='global-timestep'
            )
            collection = self.graph.get_collection(name='global_step')
            if len(collection) == 0:
                self.graph.add_to_collection(name='global_step', value=self.global_timestep)

            if self.summarizer_spec is not None:
                with tf.name_scope(name='summarizer'):

                    directory = self.summarizer_spec['directory']
                    if os.path.isdir(directory):
                        directories = sorted(
                            d for d in os.listdir(directory)
                            if os.path.isdir(os.path.join(directory, d))
                            and d.startswith('summary-')
                        )
                    else:
                        os.makedirs(directory)
                        directories = list()
                    max_summaries = self.summarizer_spec.get('max-summaries', 5)
                    if len(directories) > max_summaries - 1:
                        for subdir in directories[:len(directories) - max_summaries + 1]:
                            subdir = os.path.join(directory, subdir)
                            os.remove(os.path.join(subdir, os.listdir(subdir)[0]))
                            os.rmdir(subdir)

                    logdir = os.path.join(directory, time.strftime('summary-%Y%m%d-%H%M%S'))
                    flush_millis = (self.summarizer_spec.get('flush', 10) * 1000)
                    self.summarizer = tf.summary.create_file_writer(
                        logdir=logdir, max_queue=None, flush_millis=flush_millis,
                        filename_suffix=None
                    )
                    self.summarizer_init = self.summarizer.init()
                    self.summarizer_flush = self.summarizer.flush()
                    self.summarizer_close = self.summarizer.close()

                    default_summarizer = self.summarizer.as_default()
                    default_summarizer.__enter__()

                    if self.summary_labels == 'all' or 'graph' in self.summary_labels:
                        pass

        # TensorFlow device and scope
        Module.global_scope.append(self.name)
        if self.device is not None:
            self.device = tf.device(device_name_or_function=self.device)
            self.device.__enter__()
        self.scope = tf.name_scope(name=self.name)

        with self.scope:
            if self.parent is None:
                # with tf.device(device_name_or_function=(self.global_model.device if self.global_model else self.device)):

                if self.summarizer_spec is not None:
                    Module.global_summary_step = 'timestep'
                    condition = tf.constant(value=True, dtype=util.tf_dtype(dtype='bool'))
                    record_summaries = tf.summary.record_if(condition=condition)
                    record_summaries.__enter__()

                # Global episode
                self.global_episode = self.add_variable(
                    name='global-episode', dtype='long', shape=(), is_trainable=False,
                    initializer='zeros', shared='global-episode'
                )

                # Global update
                self.global_update = self.add_variable(
                    name='global-update', dtype='long', shape=(), is_trainable=False,
                    initializer='zeros', shared='global-update'
                )

                Module.global_tensors = OrderedDict(
                    timestep=self.global_timestep, episode=self.global_episode,
                    update=self.global_update
                )

                if self.summarizer_spec is not None:
                    record_summaries.__exit__(None, None, None)

                    Module.global_summary_step = 'update'
                    if 'frequency' not in self.summarizer_spec or \
                            isinstance(self.summarizer_spec['frequency'], int):
                        condition = tf.constant(value=True, dtype=util.tf_dtype(dtype='bool'))

                    elif 'variables' in self.summarizer_spec['frequency']:
                        step = Module.retrieve_tensor(name=Module.global_summary_step)
                        frequency = tf.constant(
                            value=self.summarizer_spec['frequency']['variables'],
                            dtype=util.tf_dtype(dtype='long')
                        )
                        zero = tf.constant(value=0, dtype=util.tf_dtype(dtype='long'))
                        condition = (
                            lambda: tf.math.equal(x=tf.math.mod(x=step, y=frequency), y=zero)
                        )

                    else:
                        condition = tf.constant(value=False, dtype=util.tf_dtype(dtype='bool'))

                    record_summaries = tf.summary.record_if(condition=condition)
                    record_summaries.__enter__()

            for module in self.modules.values():
                module.initialize()
            self.tf_initialize()

            if self.parent is None and self.summarizer_spec is not None:
                record_summaries.__exit__(None, None, None)
                Module.global_summary_step = None

        self.scope = None
        if self.device is not None:
            self.device.__exit__(None, None, None)
        Module.global_scope.pop()

        if self.parent is None:
            assert len(Module.global_scope) == 0
            Module.global_scope = None
            Module.while_counter = None
            Module.cond_counter = None
            Module.global_tensors = None

        # Internal TensorFlow functions, prefixed by 'tf_'
        for attribute in sorted(dir(self)):
            if attribute.startswith('tf_') and attribute != 'tf_initialize':
                function_name = attribute[3:]

                if not util.is_valid_name(name=function_name):
                    raise TensorforceError.unexpected()
                if hasattr(self, function_name):
                    raise TensorforceError.unexpected()

                tf_function = getattr(self, attribute)
                if not callable(tf_function):
                    raise TensorforceError.unexpected()

                function = self.create_tf_function(
                    name='{}.{}'.format(self.name, function_name), tf_function=tf_function
                )

                setattr(self, function_name, function)

        #  API TensorFlow functions, prefixed by 'api_'
        for attribute in sorted(dir(self)):
            if attribute.startswith('api_'):
                function_name = attribute[4:]
                assert hasattr(self, 'config')
                if self.config is not None and 'api_functions' in self.config and \
                        function_name not in self.config['api_functions']:
                    continue

                if function_name in ('act', 'independent_act'):
                    Module.global_summary_step = 'timestep'
                elif function_name in ('observe', 'experience'):
                    Module.global_summary_step = 'episode'
                elif function_name == 'update':
                    Module.global_summary_step = 'update'

                if self.summarizer_spec is not None:
                    if 'frequency' not in self.summarizer_spec:
                        condition = tf.constant(value=True, dtype=util.tf_dtype(dtype='bool'))

                    elif isinstance(self.summarizer_spec['frequency'], int):
                        if function_name in ('act', 'independent_act'):
                            step = self.global_timestep
                            frequency = tf.constant(
                                value=self.summarizer_spec['frequency'],
                                dtype=util.tf_dtype(dtype='long')
                            )
                            zero = tf.constant(value=0, dtype=util.tf_dtype(dtype='long'))
                            condition = (
                                lambda: tf.math.equal(x=tf.math.mod(x=step, y=frequency), y=zero)
                            )
                        elif function_name in ('reset', 'independent_act'):
                            condition = tf.constant(value=False, dtype=util.tf_dtype(dtype='bool'))
                        else:
                            condition = tf.constant(value=True, dtype=util.tf_dtype(dtype='bool'))

                    elif function_name in self.summarizer_spec['frequency']:
                        if function_name in ('act', 'independent_act'):
                            step = self.global_timestep
                        elif function_name in ('observe', 'experience'):
                            step = self.global_episode
                        elif function_name == 'update':
                            step = self.global_update
                        elif function_name == 'reset':
                            raise TensorforceError.value(
                                name='module', argument='summarizer[frequency]',
                                value=function_name,
                                hint='not in {act,experience,observe,update}'
                            )
                        else:
                            raise TensorforceError.value(
                                name='module', argument='summarizer[frequency]',
                                value=function_name,
                                hint='not in {act,experience,observe,update}'
                            )
                        frequency = tf.constant(
                            value=self.summarizer_spec['frequency'][function_name],
                            dtype=util.tf_dtype(dtype='long')
                        )
                        zero = tf.constant(value=0, dtype=util.tf_dtype(dtype='long'))
                        condition = (
                            lambda: tf.math.equal(x=tf.math.mod(x=step, y=frequency), y=zero)
                        )

                    else:
                        condition = tf.constant(value=False, dtype=util.tf_dtype(dtype='bool'))

                    record_summaries = tf.summary.record_if(condition=condition)
                    record_summaries.__enter__()

                if not util.is_valid_name(name=function_name):
                    raise TensorforceError.unexpected()
                if hasattr(self, function_name):
                    raise TensorforceError.unexpected()

                api_function = getattr(self, attribute)
                if not callable(api_function):
                    raise TensorforceError.unexpected()

                function = self.create_api_function(
                    name='{}.{}'.format(self.name, function_name), api_function=api_function
                )

                setattr(self, function_name, function)

                if self.summarizer_spec is not None:
                    record_summaries.__exit__(None, None, None)
                    Module.global_summary_step = None

        if self.parent is None:
            self.graph_summary = None  # TODO!
            if self.summarizer_spec is not None:
                default_summarizer.__exit__(None, None, None)
Exemplo n.º 7
0
    def get_module_class_and_kwargs(name,
                                    module,
                                    modules=None,
                                    default_module=None,
                                    **kwargs):
        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='module',
                                         argument='name',
                                         value=name)
        # module
        # ???
        # modules
        if modules is not None and not isinstance(modules, dict):
            raise TensorforceError.type(name='module',
                                        argument='modules',
                                        value=modules)
        # default_module
        # ???
        if isinstance(module, dict):
            # Dictionary module specification (type either given via 'type' or 'default_module')
            for key, value in module.items():
                if key in kwargs and kwargs[key] != value:
                    raise TensorforceError.mismatch(name='module',
                                                    argument=key,
                                                    value1=kwargs[key],
                                                    value2=value)
                kwargs[key] = value
            module = kwargs.pop('type', default_module)
            return Module.get_module_class_and_kwargs(
                name=name,
                module=module,
                modules=modules,
                default_module=default_module,
                **kwargs)

        elif isinstance(module, str):
            if os.path.isfile(module):
                # JSON file module specification
                with open(module, 'r') as fp:
                    module = json.load(fp=fp)
                return Module.get_module_class_and_kwargs(
                    name=name,
                    module=module,
                    modules=modules,
                    default_module=default_module,
                    **kwargs)

            elif '.' in module:
                # Library module specification
                library_name, module_name = module.rsplit('.', 1)
                library = importlib.import_module(name=library_name)
                module = getattr(library, module_name)
                return Module.get_module_class_and_kwargs(
                    name=name,
                    module=module,
                    modules=modules,
                    default_module=default_module,
                    **kwargs)

            elif modules is not None and module in modules:
                # Keyword module specification
                return Module.get_module_class_and_kwargs(
                    name=name,
                    module=modules[module],
                    default_module=default_module,
                    **kwargs)

            elif 'default' in modules or default_module is not None:
                # Default module specification
                if '_first_arg' in kwargs:
                    raise TensorforceError.value(name='module kwargs',
                                                 value='_first_arg')
                if module is not None:
                    kwargs['_first_arg'] = module
                if default_module is None:
                    default_module = modules['default']
                return Module.get_module_class_and_kwargs(
                    name=name,
                    module=default_module,
                    modules=modules,
                    **kwargs)

            else:
                raise TensorforceError.value(name='module specification',
                                             value=module)

        elif not callable(module) and ('default' in modules
                                       or default_module is not None):
            # Default module specification
            if '_first_arg' in kwargs:
                raise TensorforceError.value(name='module kwargs',
                                             value='_first_arg')
            if module is not None:
                kwargs['_first_arg'] = module
            if default_module is None:
                default_module = modules['default']
            return Module.get_module_class_and_kwargs(name=name,
                                                      module=default_module,
                                                      modules=modules,
                                                      **kwargs)

        elif callable(module):
            first_arg = kwargs.pop('_first_arg', None)
            return module, first_arg, kwargs

        else:
            raise TensorforceError.value(name='module specification',
                                         value=module)
Exemplo n.º 8
0
    def add_variable(self,
                     name,
                     dtype,
                     shape,
                     is_trainable,
                     initializer='zeros',
                     summarize=None,
                     shared=None):
        # name
        if not util.is_valid_name(name=name):
            raise TensorforceError.value(name='variable',
                                         argument='name',
                                         value=name)
        elif name in self.variables:
            raise TensorforceError.exists(name='variable', value=name)
        # dtype
        if not util.is_valid_type(dtype=dtype):
            raise TensorforceError.value(name='variable',
                                         argument='dtype',
                                         value=dtype)
        # shape
        if not util.is_iterable(x=shape) or \
                not all(isinstance(num_dims, int) for num_dims in shape):
            raise TensorforceError.type(name='variable',
                                        argument='shape',
                                        value=shape)
        elif not all(num_dims > 0 for num_dims in shape):
            raise TensorforceError.value(name='variable',
                                         argument='shape',
                                         value=shape)
        # is_trainable
        if not isinstance(is_trainable, bool):
            raise TensorforceError.type(name='variable',
                                        argument='is_trainable',
                                        value=is_trainable)
        # initializer
        if not isinstance(initializer, (util.py_dtype(dtype=dtype), np.ndarray, tf.Tensor)) and \
                initializer not in ('random', 'zeros', 'ones'):
            raise TensorforceError.value(name='variable',
                                         argument='initializer',
                                         value=initializer)
        elif isinstance(initializer, np.ndarray) and \
                initializer.dtype != util.np_dtype(dtype=dtype):
            raise TensorforceError.type(name='variable',
                                        argument='initializer',
                                        value=initializer)
        elif isinstance(initializer,
                        tf.Tensor) and util.dtype(x=initializer) != dtype:
            raise TensorforceError.type(name='variable',
                                        argument='initializer',
                                        value=initializer)
        elif isinstance(initializer,
                        str) and initializer == 'random' and dtype != 'float':
            raise TensorforceError(
                message=
                "Invalid variable initializer value for non-float variable: {}."
                .format(initializer))
        # summarize
        if summarize is not None and not isinstance(summarize, bool):
            raise TensorforceError.type(name='variable',
                                        argument='summarize',
                                        value=summarize)
        # shared
        if shared is not None and not isinstance(shared, str):
            raise TensorforceError.type(name='variable',
                                        argument='shared',
                                        value=shared)

        variable = None

        if shared is not None and len(tf.get_collection(key=shared)) > 0:
            # Retrieve shared variable from TensorFlow
            collection = tf.get_collection(key=shared)
            if len(collection) > 1:
                raise TensorforceError.unexpected()
            variable = collection[0]

        else:
            tf_dtype = util.tf_dtype(dtype=dtype)

            # Variable initializer
            if isinstance(initializer, util.py_dtype(dtype=dtype)):
                initializer = tf.constant(value=initializer,
                                          dtype=tf_dtype,
                                          shape=shape)
            elif isinstance(initializer, np.ndarray):
                if initializer.shape != shape:
                    raise TensorforceError(
                        "Invalid variable initializer shape: {}.".format(
                            initializer.shape))
                initializer = initializer
            elif isinstance(initializer, tf.Tensor):
                if util.shape(x=initializer) != shape:
                    raise TensorforceError(
                        "Invalid variable initializer shape: {}.".format(
                            util.shape(x=initializer)))
                initializer = initializer
            elif not isinstance(initializer, str):
                raise TensorforceError(
                    "Invalid variable initializer: {}".format(initializer))
            elif initializer == 'random':
                stddev = min(
                    0.1, sqrt(2.0 / (util.product(xs=shape[:-1]) + shape[-1])))
                initializer = tf.random_normal(
                    shape=shape,
                    mean=0.0,
                    stddev=stddev,
                    dtype=util.tf_dtype(dtype=dtype))
            elif initializer == 'zeros':
                initializer = tf.zeros(shape=shape, dtype=tf_dtype)
            elif initializer == 'ones':
                initializer = tf.ones(shape=shape, dtype=tf_dtype)

            # Variable
            variable = tf.Variable(initial_value=initializer,
                                   trainable=is_trainable,
                                   validate_shape=True,
                                   name=name,
                                   dtype=tf_dtype,
                                   expected_shape=shape)  # collections=

            # Register shared variable with TensorFlow
            if shared is not None:
                tf.add_to_collection(name=shared, value=variable)

        # Register variable
        self.variables[name] = variable
        if is_trainable:
            self.trainable_variables[name] = variable

        # Add summary
        if (summarize is None and is_trainable) or summarize:
            variable = tf.identity(input=variable)
            variable = self.add_summary(label='variables',
                                        name=name,
                                        tensor=variable,
                                        mean_variance=True)

        return variable
Exemplo n.º 9
0
    def initialize(self):
        # Check whether module is already initialized
        if self.is_initialized:
            raise TensorforceError(message="Module already initialized.")

        # Set internal attributes
        self.is_initialized = True
        self.variables = OrderedDict()
        self.trainable_variables = OrderedDict()
        self.regularized_variables = OrderedDict()

        if self.parent is None:
            Module.global_scope = list()

        Module.global_scope.append(self.name)

        # TensorFlow device and variable scope
        self.scope = tf.variable_scope(name_or_scope=self.name)
        if self.device is not None:
            self.device = tf.device(device_name_or_function=self.device)
            self.device.__enter__()

        with self.scope:
            if self.parent is None:
                # with tf.device(device_name_or_function=(self.global_model.device if self.global_model else self.device)):

                # Global timestep
                self.global_timestep = self.add_variable(
                    name='global-timestep',
                    dtype='long',
                    shape=(),
                    is_trainable=False,
                    initializer='zeros',
                    shared='global-timestep')
                collection = tf.get_collection(key=tf.GraphKeys.GLOBAL_STEP)
                if len(collection) == 0:
                    tf.add_to_collection(name=tf.GraphKeys.GLOBAL_STEP,
                                         value=self.global_timestep)

                # Global episode
                self.global_episode = self.add_variable(
                    name='global-episode',
                    dtype='long',
                    shape=(),
                    is_trainable=False,
                    initializer='zeros',
                    shared='global-episode')

                Module.global_tensors = OrderedDict(
                    timestep=self.global_timestep, episode=self.global_episode)

                if self.summarizer_spec is not None:
                    if 'steps' in self.summarizer_spec:
                        record_summaries = tf.contrib.summary.record_summaries_every_n_global_steps(
                            n=self.summarizer_spec['steps'],
                            global_step=self.global_timestep)
                    else:
                        record_summaries = tf.contrib.summary.always_record_summaries(
                        )
                    record_summaries.__enter__()

            for module in self.modules.values():
                module.initialize()
            self.tf_initialize()

        if self.device is not None:
            self.device.__exit__(None, None, None)

        Module.global_scope.pop()

        if self.parent is None:
            assert len(Module.global_scope) == 0
            Module.global_tensors = None
            Module.global_scope = None

        # Internal TensorFlow functions, prefixed by 'tf_'
        for attribute in sorted(dir(self)):
            if attribute.startswith('tf_') and attribute != 'tf_initialize':
                function_name = attribute[3:]

                if not util.is_valid_name(name=function_name):
                    raise TensorforceError.value(name='TF-function name',
                                                 value=function_name)
                if hasattr(self, function_name):
                    raise TensorforceError.exists(name='TF-function',
                                                  value=function_name)

                tf_function = getattr(self, attribute)
                if not callable(tf_function):
                    raise TensorforceError.exists(name='TF-function',
                                                  value=tf_function)

                function = self.create_tf_function(name='{}.{}'.format(
                    self.name, function_name),
                                                   tf_function=tf_function)

                setattr(self, function_name, function)

        #  API TensorFlow functions, prefixed by 'api_'
        for attribute in sorted(dir(self)):
            if attribute.startswith('api_'):
                function_name = attribute[4:]

                # Todo: own every_n_step implementation, plus maybe per function steps argument
                if function_name == 'observe':
                    if self.summarizer_spec is not None and 'steps' in self.summarizer_spec:
                        record_summaries2 = tf.contrib.summary.always_record_summaries(
                        )
                        record_summaries2.__enter__()

                if not util.is_valid_name(name=function_name):
                    raise TensorforceError.value(name='API-function name',
                                                 value=function_name)
                if hasattr(self, function_name):
                    raise TensorforceError.exists(name='API-function',
                                                  value=function_name)

                api_function = getattr(self, attribute)
                if not callable(api_function):
                    raise TensorforceError.exists(name='API-function',
                                                  value=tf_function)

                function = self.create_api_function(name='{}.{}'.format(
                    self.name, function_name),
                                                    api_function=api_function)

                setattr(self, function_name, function)

                if function_name == 'observe':
                    if self.summarizer_spec is not None and 'steps' in self.summarizer_spec:
                        record_summaries2.__exit__(None, None, None)

        if self.parent is None:
            if self.summarizer_spec is not None:
                record_summaries.__exit__(None, None, None)