Exemplo n.º 1
0
def model(word_len, sent_len, nclass):
    unicode_size = 1000
    ch_embed_dim = 20

    h, w = valid(ch_embed_dim,
                 word_len,
                 stride=(1, 1),
                 kernel_size=(ch_embed_dim, 5))
    h, w = valid(h, w, stride=(1, 1), kernel_size=(1, 5))
    h, w = valid(h, w, stride=(1, 2), kernel_size=(1, 5))
    conv_out_dim = int(h * w * 60)

    X_ph = tf.placeholder('int32', [None, sent_len, word_len])
    input_sn = tg.StartNode(input_vars=[X_ph])
    charcnn_hn = tg.HiddenNode(prev=[input_sn],
                               layers=[
                                   Reshape(shape=(-1, word_len)),
                                   Embedding(cat_dim=unicode_size,
                                             encode_dim=ch_embed_dim,
                                             zero_pad=True),
                                   Reshape(shape=(-1, ch_embed_dim, word_len,
                                                  1)),
                                   Conv2D(input_channels=1,
                                          num_filters=20,
                                          padding='VALID',
                                          kernel_size=(ch_embed_dim, 5),
                                          stride=(1, 1)),
                                   RELU(),
                                   Conv2D(input_channels=20,
                                          num_filters=40,
                                          padding='VALID',
                                          kernel_size=(1, 5),
                                          stride=(1, 1)),
                                   RELU(),
                                   Conv2D(input_channels=40,
                                          num_filters=60,
                                          padding='VALID',
                                          kernel_size=(1, 5),
                                          stride=(1, 2)),
                                   RELU(),
                                   Flatten(),
                                   Linear(conv_out_dim, nclass),
                                   Reshape((-1, sent_len, nclass)),
                                   ReduceSum(1),
                                   Softmax()
                               ])

    output_en = tg.EndNode(prev=[charcnn_hn])
    graph = tg.Graph(start=[input_sn], end=[output_en])
    y_train_sb = graph.train_fprop()[0]
    y_test_sb = graph.test_fprop()[0]

    return X_ph, y_train_sb, y_test_sb
Exemplo n.º 2
0
Arquivo: gan.py Projeto: Shirlly/GAN
    def discriminator(self):
        if not self.generator_called:
            raise Exception(
                'self.generator() has to be called first before self.discriminator()'
            )
        scope = 'Discriminator'
        with self.tf_graph.as_default():
            with tf.name_scope(scope):
                h1, w1 = valid(self.h,
                               self.w,
                               kernel_size=(5, 5),
                               stride=(1, 1))
                h2, w2 = valid(h1, w1, kernel_size=(5, 5), stride=(2, 2))
                h3, w3 = valid(h2, w2, kernel_size=(5, 5), stride=(2, 2))
                flat_dim = int(h3 * w3 * 32)
                real_ph = tf.placeholder('float32', [None, self.h, self.w, 1],
                                         name='real')
                real_sn = tg.StartNode(input_vars=[real_ph])

                # fake_ph = tf.placeholder('float32', [None, self.h, self.w, 1], name='fake')
                # fake_sn = tg.StartNode(input_vars=[fake_ph])

                disc_hn = tg.HiddenNode(
                    prev=[real_sn, self.gen_hn],
                    layers=[
                        Conv2D(input_channels=1,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/c1'),
                        LeakyRELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/c2'),
                        LeakyRELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/c3'),
                        LeakyRELU(),
                        #    Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                        #    RELU(),
                        Flatten(),
                        Linear(flat_dim, self.bottleneck_dim),
                        TFBatchNormalization(name=scope + '/l1'),
                        LeakyRELU(),
                        # Dropout(0.5),
                    ])

                class_hn = tg.HiddenNode(prev=[disc_hn],
                                         layers=[
                                             Linear(self.bottleneck_dim,
                                                    self.nclass),
                                             Softmax()
                                         ])

                judge_hn = tg.HiddenNode(
                    prev=[disc_hn],
                    layers=[
                        Linear(self.bottleneck_dim, 1),
                        #  Sigmoid()
                    ])

                real_class_en = tg.EndNode(prev=[class_hn])
                real_judge_en = tg.EndNode(prev=[judge_hn])

                fake_class_en = tg.EndNode(prev=[class_hn])
                fake_judge_en = tg.EndNode(prev=[judge_hn])

                graph = tg.Graph(start=[real_sn],
                                 end=[real_class_en, real_judge_en])

                real_train = graph.train_fprop()
                real_valid = graph.test_fprop()
                # dis_var_list = graph.variables
                # for var in dis_var_list:
                # print var.name

                graph = tg.Graph(start=[self.noise_sn, self.y_sn],
                                 end=[fake_class_en, fake_judge_en])
                fake_train = graph.train_fprop()
                fake_valid = graph.test_fprop()

                # print('========')
                # for var in graph.variables:
                # print var.name

                dis_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)
                # for var in dis_var_list:
                #     print(var.name)
                #
                # print('=========')
                # for var in tf.global_variables():
                #     print(var.name)
                # import pdb; pdb.set_trace()
                # print()

            # graph = tg.Graph(start=[G_sn], end=[class_en, judge_en])
            # class_train_sb, judge_train_sb = graph.train_fprop() # symbolic outputs
            # class_test_sb, judge_test_sb = graph.test_fprop() # symbolic outputs

        return real_ph, real_train, real_valid, fake_train, fake_valid, dis_var_list
Exemplo n.º 3
0
Arquivo: gan.py Projeto: Shirlly/GAN
    def generator(self):
        self.generator_called = True
        with self.tf_graph.as_default():
            scope = 'Generator'
            with tf.name_scope(scope):
                # X_ph = tf.placeholder('float32', [None, self.h, self.w, 1], name='X')
                # X_sn = tg.StartNode(input_vars=[X_ph])
                noise_ph = tf.placeholder('float32',
                                          [None, self.bottleneck_dim],
                                          name='noise')
                self.noise_sn = tg.StartNode(input_vars=[noise_ph])

                h1, w1 = valid(self.h,
                               self.w,
                               kernel_size=(5, 5),
                               stride=(1, 1))
                h2, w2 = valid(h1, w1, kernel_size=(5, 5), stride=(2, 2))
                h3, w3 = valid(h2, w2, kernel_size=(5, 5), stride=(2, 2))
                flat_dim = int(h3 * w3 * 32)
                print('h1:{}, w1:{}'.format(h1, w1))
                print('h2:{}, w2:{}'.format(h2, w2))
                print('h3:{}, w3:{}'.format(h3, w3))
                print('flat dim:{}'.format(flat_dim))

                # enc_hn = tg.HiddenNode(prev=[X_sn],
                #                        layers=[Conv2D(input_channels=1, num_filters=32, kernel_size=(5,5), stride=(1,1), padding='VALID'),
                #                                RELU(),
                #                                Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                #                                RELU(),
                #                                Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                #                                RELU(),
                #                             #    Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                #                             #    RELU(),
                #                                Flatten(),
                #                                Linear(flat_dim, 300),
                #                                RELU(),
                #                                # seq.add(Dropout(0.5))
                #                                Linear(300, self.bottleneck_dim),
                #                                Tanh(),
                #                                ])

                y_ph = tf.placeholder('float32', [None, self.nclass], name='y')
                self.y_sn = tg.StartNode(input_vars=[y_ph])

                noise_hn = tg.HiddenNode(prev=[self.noise_sn, self.y_sn],
                                         input_merge_mode=Concat(1))

                self.gen_hn = tg.HiddenNode(
                    prev=[noise_hn],
                    layers=[
                        Linear(self.bottleneck_dim + 10, flat_dim),
                        RELU(),

                        ######[ Method 0 ]######
                        #    Reshape((-1, h3, w3, 32)),
                        #    Conv2D_Transpose(input_channels=32, num_filters=100, output_shape=(h2,w2),
                        #                     kernel_size=(5,5), stride=(2,2), padding='VALID'),
                        ######[ End Method 0 ]######

                        ######[ Method 1 ]######
                        Reshape((-1, 1, 1, flat_dim)),
                        Conv2D_Transpose(input_channels=flat_dim,
                                         num_filters=200,
                                         output_shape=(2, 2),
                                         kernel_size=(2, 2),
                                         stride=(1, 1),
                                         padding='VALID'),
                        TFBatchNormalization(name=scope + '/dc1'),
                        RELU(),
                        Conv2D_Transpose(input_channels=200,
                                         num_filters=100,
                                         output_shape=(h2, w2),
                                         kernel_size=(9, 9),
                                         stride=(1, 1),
                                         padding='VALID'),
                        ######[ End Method 1 ]######
                        TFBatchNormalization(name=scope + '/dc2'),
                        RELU(),
                        Conv2D_Transpose(input_channels=100,
                                         num_filters=50,
                                         output_shape=(h1, w1),
                                         kernel_size=(5, 5),
                                         stride=(2, 2),
                                         padding='VALID'),
                        TFBatchNormalization(name=scope + '/dc3'),
                        RELU(),
                        Conv2D_Transpose(input_channels=50,
                                         num_filters=1,
                                         output_shape=(self.h, self.w),
                                         kernel_size=(5, 5),
                                         stride=(1, 1),
                                         padding='VALID'),
                        SetShape((-1, self.h, self.w, 1)),
                        Sigmoid()
                    ])

                y_en = tg.EndNode(prev=[self.gen_hn])
                graph = tg.Graph(start=[self.noise_sn, self.y_sn], end=[y_en])

                G_train_sb = graph.train_fprop()[0]
                G_test_sb = graph.test_fprop()[0]
                # import pdb; pdb.set_trace()
                gen_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)

        return y_ph, noise_ph, G_train_sb, G_test_sb, gen_var_list
Exemplo n.º 4
0
    def generator(self):
        self.generator_called = True
        with self.tf_graph.as_default():
            scope = 'Generator'
            with tf.name_scope(scope):
                h1, w1 = valid(self.h,
                               self.w,
                               kernel_size=(5, 5),
                               stride=(1, 1))
                h2, w2 = valid(h1, w1, kernel_size=(5, 5), stride=(2, 2))
                h3, w3 = valid(h2, w2, kernel_size=(5, 5), stride=(2, 2))
                flat_dim = int(h3 * w3 * 32)
                print('h1:{}, w1:{}'.format(h1, w1))
                print('h2:{}, w2:{}'.format(h2, w2))
                print('h3:{}, w3:{}'.format(h3, w3))
                print('flat dim:{}'.format(flat_dim))

                self.gen_real_sn = tg.StartNode(input_vars=[self.real_ph])

                enc_hn = tg.HiddenNode(
                    prev=[self.gen_real_sn],
                    layers=[
                        Conv2D(input_channels=self.c,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/genc1'),
                        RELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/genc2'),
                        RELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/genc3'),
                        RELU(),
                        #    Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                        #    RELU(),
                        Flatten(),
                        Linear(flat_dim, 300),
                        TFBatchNormalization(name=scope + '/genc4'),
                        RELU(),
                        Linear(300, self.bottleneck_dim),
                        Tanh(),
                    ])

                self.noise_sn = tg.StartNode(input_vars=[self.noise_ph])

                self.gen_hn = tg.HiddenNode(
                    prev=[self.noise_sn, enc_hn],
                    input_merge_mode=Sum(),
                    layers=[
                        Linear(self.bottleneck_dim, flat_dim),
                        RELU(),

                        ######[ Method 0 ]######
                        #    Reshape((-1, h3, w3, 32)),
                        #    Conv2D_Transpose(input_channels=32, num_filters=100, output_shape=(h2,w2),
                        #                     kernel_size=(5,5), stride=(2,2), padding='VALID'),
                        ######[ End Method 0 ]######

                        ######[ Method 1 ]######
                        Reshape((-1, 1, 1, flat_dim)),
                        #    Reshape((-1, h))
                        Conv2D_Transpose(input_channels=flat_dim,
                                         num_filters=200,
                                         output_shape=(h3, w3),
                                         kernel_size=(h3, w3),
                                         stride=(1, 1),
                                         padding='VALID'),
                        #    BatchNormalization(layer_type='conv', dim=200, short_memory=0.01),
                        TFBatchNormalization(name=scope + '/g1'),
                        RELU(),
                        Conv2D_Transpose(input_channels=200,
                                         num_filters=100,
                                         output_shape=(h2, w2),
                                         kernel_size=(5, 5),
                                         stride=(2, 2),
                                         padding='VALID'),
                        #    BatchNormalization(layer_type='conv', dim=100, short_memory=0.01),
                        ######[ End Method 1 ]######
                        TFBatchNormalization(name=scope + '/g2'),
                        RELU(),
                        Conv2D_Transpose(input_channels=100,
                                         num_filters=50,
                                         output_shape=(h1, w1),
                                         kernel_size=(5, 5),
                                         stride=(2, 2),
                                         padding='VALID'),
                        #    BatchNormalization(layer_type='conv', dim=50, short_memory=0.01),
                        TFBatchNormalization(name=scope + '/g3'),
                        RELU(),
                        Conv2D_Transpose(input_channels=50,
                                         num_filters=self.c,
                                         output_shape=(self.h, self.w),
                                         kernel_size=(5, 5),
                                         stride=(1, 1),
                                         padding='VALID'),
                        SetShape((-1, self.h, self.w, self.c)),
                        Sigmoid()
                    ])

                h, w = valid(self.h, self.w, kernel_size=(5, 5), stride=(1, 1))
                h, w = valid(h, w, kernel_size=(5, 5), stride=(2, 2))
                h, w = valid(h, w, kernel_size=(5, 5), stride=(2, 2))
                h, w = valid(h, w, kernel_size=(h3, w3), stride=(1, 1))

                y_en = tg.EndNode(prev=[self.gen_hn])

                graph = tg.Graph(start=[self.noise_sn, self.gen_real_sn],
                                 end=[y_en])

                G_train_sb = graph.train_fprop()[0]
                G_test_sb = graph.test_fprop()[0]
                gen_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)

        return self.y_ph, self.noise_ph, G_train_sb, G_test_sb, gen_var_list
Exemplo n.º 5
0
    def discriminator(self):
        if not self.generator_called:
            raise Exception(
                'self.generator() has to be called first before self.discriminator()'
            )
        scope = 'Discriminator'
        with self.tf_graph.as_default():
            with tf.name_scope(scope):
                h1, w1 = valid(self.h,
                               self.w,
                               kernel_size=(5, 5),
                               stride=(1, 1))
                h2, w2 = valid(h1, w1, kernel_size=(5, 5), stride=(2, 2))
                h3, w3 = valid(h2, w2, kernel_size=(5, 5), stride=(2, 2))
                flat_dim = int(h3 * w3 * 32)

                dis_real_sn = tg.StartNode(input_vars=[self.real_ph])

                # fake_ph = tf.placeholder('float32', [None, self.h, self.w, 1], name='fake')
                # fake_sn = tg.StartNode(input_vars=[fake_ph])

                disc_hn = tg.HiddenNode(
                    prev=[dis_real_sn, self.gen_hn],
                    layers=[
                        Conv2D(input_channels=self.c,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d1'),
                        # BatchNormalization(layer_type='conv', dim=32, short_memory=0.01),
                        LeakyRELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d2'),
                        # BatchNormalization(layer_type='conv', dim=32, short_memory=0.01),
                        LeakyRELU(),
                        Conv2D(input_channels=32,
                               num_filters=32,
                               kernel_size=(5, 5),
                               stride=(2, 2),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d3'),
                        # BatchNormalization(layer_type='conv', dim=32, short_memory=0.01),
                        LeakyRELU(),
                        #    Conv2D(input_channels=32, num_filters=32, kernel_size=(5,5), stride=(2,2), padding='VALID'),
                        #    RELU(),
                        Flatten(),
                        Linear(flat_dim, self.bottleneck_dim),
                        # BatchNormalization(layer_type='fc', dim=self.bottleneck_dim, short_memory=0.01),
                        TFBatchNormalization(name=scope + '/d4'),
                        LeakyRELU(),
                        # Dropout(0.5),
                    ])

                class_hn = tg.HiddenNode(prev=[disc_hn],
                                         layers=[
                                             Linear(self.bottleneck_dim,
                                                    self.nclass),
                                             Softmax()
                                         ])

                judge_hn = tg.HiddenNode(
                    prev=[disc_hn],
                    layers=[Linear(self.bottleneck_dim, 1),
                            Sigmoid()])

                real_class_en = tg.EndNode(prev=[class_hn])
                real_judge_en = tg.EndNode(prev=[judge_hn])

                fake_class_en = tg.EndNode(prev=[class_hn])
                fake_judge_en = tg.EndNode(prev=[judge_hn])

                graph = tg.Graph(start=[dis_real_sn],
                                 end=[real_class_en, real_judge_en])
                real_train = graph.train_fprop()
                real_valid = graph.test_fprop()

                graph = tg.Graph(start=[self.noise_sn, self.gen_real_sn],
                                 end=[fake_class_en, fake_judge_en])
                fake_train = graph.train_fprop()
                fake_valid = graph.test_fprop()

                dis_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)

        return self.real_ph, real_train, real_valid, fake_train, fake_valid, dis_var_list
Exemplo n.º 6
0
Arquivo: wgan.py Projeto: Shirlly/GAN
    def discriminator(self):
        if not self.generator_called:
            raise Exception(
                'self.generator() has to be called first before self.discriminator()'
            )
        scope = 'Discriminator'
        with self.tf_graph.as_default():
            with tf.name_scope(scope):
                h1, w1 = valid(self.h,
                               self.w,
                               kernel_size=(5, 5),
                               stride=(1, 1))
                h2, w2 = valid(h1, w1, kernel_size=(5, 5), stride=(2, 2))
                h3, w3 = valid(h2, w2, kernel_size=(5, 5), stride=(2, 2))
                flat_dim = int(h3 * w3 * 32)

                h1, w1 = valid(self.char_embed_dim,
                               self.word_len,
                               kernel_size=(self.char_embed_dim, 3),
                               stride=(1, 1))
                print('h1:{}, w1:{}'.format(h1, w1))
                h2, w2 = valid(h1, w1, kernel_size=(1, 3), stride=(1, 1))
                print('h2:{}, w2:{}'.format(h2, w2))
                h3, w3 = valid(h2, w2, kernel_size=(1, 3), stride=(1, 1))
                print('h3:{}, w3:{}'.format(h3, w3))
                # h4, w4 = valid(h3, w3, kernel_size=(1,6), stride=(1,1))
                # print('h4:{}, w4:{}'.format(h4, w4))
                # hf, wf = h4, w4
                hf, wf = h3, w3
                n_filters = 100

                real_sn = tg.StartNode(input_vars=[self.real_ph])

                real_hn = tg.HiddenNode(prev=[real_sn],
                                        layers=[
                                            OneHot(self.char_embed_dim),
                                            Transpose(perm=[0, 3, 2, 1])
                                        ])

                disc_hn = tg.HiddenNode(
                    prev=[real_hn, self.gen_hn],
                    layers=[
                        Conv2D(input_channels=self.sent_len,
                               num_filters=100,
                               kernel_size=(self.char_embed_dim, 3),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d1'),
                        LeakyRELU(),
                        Conv2D(input_channels=100,
                               num_filters=100,
                               kernel_size=(1, 3),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d2'),
                        LeakyRELU(),
                        Conv2D(input_channels=100,
                               num_filters=100,
                               kernel_size=(1, 3),
                               stride=(1, 1),
                               padding='VALID'),
                        TFBatchNormalization(name=scope + '/d3'),
                        LeakyRELU(),
                        # Conv2D(input_channels=32, num_filters=128, kernel_size=(1,6), stride=(1,1), padding='VALID'),
                        # RELU(),
                        Flatten(),
                        Linear(int(hf * wf * n_filters), self.bottleneck_dim),
                        TFBatchNormalization(name=scope + '/d4'),
                        LeakyRELU(),
                    ])

                class_hn = tg.HiddenNode(prev=[disc_hn],
                                         layers=[
                                             Linear(self.bottleneck_dim,
                                                    self.nclass),
                                             Softmax()
                                         ])

                judge_hn = tg.HiddenNode(
                    prev=[disc_hn],
                    layers=[
                        Linear(self.bottleneck_dim, 1),
                        #  Sigmoid()
                    ])

                real_class_en = tg.EndNode(prev=[class_hn])
                real_judge_en = tg.EndNode(prev=[judge_hn])

                fake_class_en = tg.EndNode(prev=[class_hn])
                fake_judge_en = tg.EndNode(prev=[judge_hn])

                graph = tg.Graph(start=[real_sn],
                                 end=[real_class_en, real_judge_en])

                real_train = graph.train_fprop()
                real_valid = graph.test_fprop()

                graph = tg.Graph(start=[self.noise_sn],
                                 end=[fake_class_en, fake_judge_en])
                fake_train = graph.train_fprop()
                fake_valid = graph.test_fprop()

                dis_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                                 scope=scope)

        return self.real_ph, real_train, real_valid, fake_train, fake_valid, dis_var_list