Exemplo n.º 1
0
def restore_params(network, path='models'):
    logging.info("Restore pre-trained parameters")
    maybe_download_and_extract(
        'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
        path,
        'https://github.com/fchollet/deep-learning-models/releases/download/v0.2/',
    )  # ls -al
    try:
        import h5py
    except Exception:
        raise ImportError('h5py not imported')

    f = h5py.File(
        os.path.join(path, 'resnet50_weights_tf_dim_ordering_tf_kernels.h5'),
        'r')

    for layer in network.all_layers:
        if len(layer.all_weights) == 0:
            continue
        w_names = list(f[layer.name])
        params = [f[layer.name][n][:] for n in w_names]
        # if 'bn' in layer.name:
        #     params = [x.reshape(1, 1, 1, -1) for x in params]
        assign_weights(params, layer)
        del params

    f.close()
Exemplo n.º 2
0
def restore_model(model, layer_type):
    logging.info("Restore pre-trained weights")
    # download weights
    maybe_download_and_extract(model_saved_name[layer_type], 'models', model_urls[layer_type])
    weights = []
    if layer_type == 'vgg16':
        npz = np.load(os.path.join('models', model_saved_name[layer_type]))
        # get weight list
        for val in sorted(npz.items()):
            logging.info("  Loading weights %s in %s" % (str(val[1].shape), val[0]))
            weights.append(val[1])
            if len(model.weights) == len(weights):
                break
    elif layer_type == 'vgg19':
        npz = np.load(os.path.join('models', model_saved_name[layer_type]), encoding='latin1').item()
        # get weight list
        for val in sorted(npz.items()):
            logging.info("  Loading %s in %s" % (str(val[1][0].shape), val[0]))
            logging.info("  Loading %s in %s" % (str(val[1][1].shape), val[0]))
            weights.extend(val[1])
            if len(model.weights) == len(weights):
                break
    # assign weight values
    assign_weights(weights, model)
    del weights
Exemplo n.º 3
0
    def restore_params(self, sess):
        # For no pre-trained model link

        # logging.info("Restore pre-trained parameters")
        # vgg19_npy_path = os.path.join('models', 'vgg19.npy')
        # if not os.path.isfile(vgg19_npy_path):
        #     print("Please download vgg19.npy from : https://github.com/machrisaa/tensorflow-vgg")
        #     exit()
        # npz = np.load(vgg19_npy_path, encoding='latin1').item()

        # For existing pre-trained model link
        logging.info("Restore pre-trained parameters")
        maybe_download_and_extract(
            'vgg19.npy',
            'models',
            'https://media.githubusercontent.com/media/tensorlayer/pretrained-models/master/models/',
            expected_bytes=574670860)
        vgg19_npy_path = os.path.join('models', 'vgg19.npy')
        npz = np.load(vgg19_npy_path, encoding='latin1').item()

        params = []
        for val in sorted(npz.items()):
            W = np.asarray(val[1][0])
            b = np.asarray(val[1][1])
            print("  Loading %s: %s, %s" % (val[0], W.shape, b.shape))
            params.extend([W, b])

        print("Restoring model from npz file")
        assign_params(sess, params, self.net)
        del params
Exemplo n.º 4
0
def restore_model(model, layer_type):
    logging.info("Restore pre-trained weights")
    # download weights
    maybe_download_and_extract(model_saved_name[layer_type], 'models', model_urls[layer_type])
    weights = []
    if layer_type == 'vgg16':
        npz = np.load(os.path.join('models', model_saved_name[layer_type]), allow_pickle=True)
        # get weight list
        for val in sorted(npz.items()):
            logging.info("  Loading weights %s in %s" % (str(val[1].shape), val[0]))
            weights.append(val[1])
            if len(model.all_weights) == len(weights):
                break
    elif layer_type == 'vgg19':
        npz = np.load(os.path.join('models', model_saved_name[layer_type]), allow_pickle=True, encoding='latin1').item()
        # get weight list
        for val in sorted(npz.items()):
            logging.info("  Loading %s in %s" % (str(val[1][0].shape), val[0]))
            logging.info("  Loading %s in %s" % (str(val[1][1].shape), val[0]))
            weights.extend(val[1])
            if len(model.all_weights) == len(weights):
                break
    else:
        raise TypeError(f'layer type not supported for restore_model(): {layer_type}')
    # assign weight values
    # UPDATE: weights must be shorter in len than model.all_weights (caller's duty to check)
    # assign_weights(weights, model)
    assign_weights(weights[:len(model.all_weights)], model)

    del weights
Exemplo n.º 5
0
 def restore_params(self, sess, path='models'):
     logging.info("Restore pre-trained parameters")
     maybe_download_and_extract(
         'mobilenet.npz', path, 'https://github.com/tensorlayer/pretrained-models/raw/master/models/',
         expected_bytes=25600116
     )  # ls -al
     params = load_npz(name=os.path.join(path, 'mobilenet.npz'))
     assign_params(sess, params[:len(self.net.all_params)], self.net)
     del params
Exemplo n.º 6
0
def restore_params(network, path='models'):
    logging.info("Restore pre-trained parameters")
    maybe_download_and_extract(
        'squeezenet.npz', path, 'https://github.com/tensorlayer/pretrained-models/raw/master/models/',
        expected_bytes=7405613
    )  # ls -al
    params = load_npz(name=os.path.join(path, 'squeezenet.npz'))
    assign_weights(params[:len(network.all_weights)], network)
    del params
Exemplo n.º 7
0
def restore_params(network, path='models'):
    logging.info("Restore pre-trained parameters")
    maybe_download_and_extract(
        'squeezenet.npz', path, 'https://github.com/tensorlayer/pretrained-models/raw/master/models/',
        expected_bytes=7405613
    )  # ls -al
    params = load_npz(name=os.path.join(path, 'squeezenet.npz'))
    assign_weights(params[:len(network.weights)], network)
    del params
Exemplo n.º 8
0
def restore_params(network, path='models'):
    logging.info("Restore pre-trained parameters")
    maybe_download_and_extract(
        'mobilenet.npz',
        path,
        'https://github.com/tensorlayer/pretrained-models/raw/master/models/',
        expected_bytes=25600116)  # ls -al
    params = load_npz(name=os.path.join(path, 'mobilenet.npz'))
    for idx, net_weight in enumerate(network.all_weights):
        if 'batchnorm' in net_weight.name:
            params[idx] = params[idx].reshape(1, 1, 1, -1)
    assign_weights(params[:len(network.all_weights)], network)
    del params
Exemplo n.º 9
0
    def restore_params(self, sess):
        logging.info("Restore pre-trained parameters")
        maybe_download_and_extract(
            'vgg16_weights.npz', 'models', 'http://www.cs.toronto.edu/~frossard/vgg16/', expected_bytes=553436134
        )
        npz = np.load(os.path.join('models', 'vgg16_weights.npz'))

        params = []
        for val in sorted(npz.items()):
            logging.info("  Loading params %s" % str(val[1].shape))
            params.append(val[1])
            if len(self.all_params) == len(params):
                break

        assign_params(sess, params, self.net)
        del params
Exemplo n.º 10
0
 def restore_weights(self):
     logging.info("Restore pre-trained weights")
     ## download weights
     maybe_download_and_extract(
         'vgg16_weights.npz', 'models', 'http://www.cs.toronto.edu/~frossard/vgg16/', expected_bytes=553436134
     )
     npz = np.load(os.path.join('models', 'vgg16_weights.npz'))
     ## get weight list
     weights = []
     for val in sorted(npz.items()):
         logging.info("  Loading weights %s in %s" % (str(val[1].shape), val[0]))
         weights.append(val[1])
         if len(self.weights) == len(weights):
             break
     ## assign weight values
     # print(self.weights)
     assign_weights(weights, self)
     del weights
Exemplo n.º 11
0
 def restore_weights(self):
     logging.info("Restore pre-trained weights")
     ## download weights
     maybe_download_and_extract(
         'vgg16_weights.npz',
         'models',
         'http://www.cs.toronto.edu/~frossard/vgg16/',
         expected_bytes=553436134)
     npz = np.load(os.path.join('models', 'vgg16_weights.npz'))
     ## get weight list
     weights = []
     for val in sorted(npz.items()):
         logging.info("  Loading weights %s in %s" %
                      (str(val[1].shape), val[0]))
         weights.append(val[1])
         if len(self.weights) == len(weights):
             break
     ## assign weight values
     # print(self.weights)
     assign_weights(weights, self)
     del weights
Exemplo n.º 12
0
    def restore_weights(self, sess=None):
        logging.info("Restore pre-trained weights")
        ## download weights
        maybe_download_and_extract(
            'vgg19.npy', 'models',
            'https://media.githubusercontent.com/media/tensorlayer/pretrained-models/master/models/',
            expected_bytes=574670860
        )
        vgg19_npy_path = os.path.join('models', 'vgg19.npy')
        npz = np.load(vgg19_npy_path, encoding='latin1').item()

        weights = []
        for val in sorted(npz.items()):
            W = np.asarray(val[1][0])
            b = np.asarray(val[1][1])
            print("  Loading %s: %s, %s" % (val[0], W.shape, b.shape))
            weights.extend([W, b])
            if len(self.all_params) == len(weights):
                break
        ## assign weight values
        print(self.weights)
        assign_weights(sess, weights, self)
        del weights
Exemplo n.º 13
0
    groundtruth_negatives = tf.placeholder(shape=[None, all_default_boxs_len],
                                           dtype=tf.float32,
                                           name='groundtruth_negatives')
    groundtruth_count = tf.add(groundtruth_positives, groundtruth_negatives)
    pre_cls, pre_loc, net_work = ssd_net(imageinput, True, False)
    loss_all, loss_class, loss_loc = mixedloss(pre_cls, pre_loc,
                                               groundtruth_class,
                                               groundtruth_location,
                                               groundtruth_positives,
                                               groundtruth_count)
    train_op = tf.train.AdamOptimizer(learning_rate).minimize(loss_all)
    sess = tf.Session()

    sess.run(tf.global_variables_initializer())
    maybe_download_and_extract('vgg16_weights.npz',
                               'models',
                               'http://www.cs.toronto.edu/~frossard/vgg16/',
                               expected_bytes=553436134)
    npz = np.load(os.path.join('models', 'vgg16_weights.npz'))
    params = []
    idx = 0
    for val in sorted(npz.items()):
        idx = idx + 1
        print("  Loading params %s" % (str(val[1].shape)))
        params.append(val[1])
        if idx == 17:
            break
    assign_params(sess, params, net_work['block4'])
    for epoch in range(train_epoch):
        idx = 0
        for batch_imgs, batch_ann in tl.iterate.minibatches(laod_imgs,
                                                            load_ann,
Exemplo n.º 14
0
def load_cifar100_dataset(shape=(-1, 32, 32, 3), path='./data/cifar100', plotable=False, second=3):

    print("Load or Download cifar100 > {}".format(path))

    #Helper function to unpickle the data
    def unpickle(file):
        fp = open(file, 'rb')
        if sys.version_info.major == 2:
            data = pickle.load(fp)
        elif sys.version_info.major == 3:
            data = pickle.load(fp, encoding='latin-1')
        fp.close()
        return data

    # http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz
    filename = 'cifar-100-python.tar.gz'
    url = 'https://www.cs.toronto.edu/~kriz/'
    # #Download and uncompress file
    maybe_download_and_extract(filename, path, url, extract=True)

    #Unpickle file and fill in data
    X_train = None
    y_train = []
    data_dic = unpickle(os.path.join(path,'cifar-100-python/', 'train'))
    X_train = data_dic['data']
    y_train = data_dic['fine_labels']

    test_data_dic = unpickle(os.path.join(path,'cifar-100-python',  'test'))
    X_test = test_data_dic['data']
    y_test = np.array(test_data_dic['fine_labels'])

    if shape == (-1, 3, 32, 32):
        X_test = X_test.reshape(shape)
        X_train = X_train.reshape(shape)
    elif shape == (-1, 32, 32, 3):
        X_test = X_test.reshape(shape, order='F')
        X_train = X_train.reshape(shape, order='F')
        X_test = np.transpose(X_test, (0, 2, 1, 3))
        X_train = np.transpose(X_train, (0, 2, 1, 3))
    else:
        X_test = X_test.reshape(shape)
        X_train = X_train.reshape(shape)

    y_train = np.array(y_train)

    if plotable == True:
        print('\nCIFAR-100')
        import matplotlib.pyplot as plt
        fig = plt.figure(1)

        print('Shape of a training image: X_train[0]',X_train[0].shape)

        plt.ion()       # interactive mode
        count = 1
        for row in range(10):
            for col in range(10):
                a = fig.add_subplot(10, 10, count)
                if shape == (-1, 3, 32, 32):
                    plt.imshow(np.transpose(X_train[count-1], (1, 2, 0)), interpolation='nearest')
                elif shape == (-1, 32, 32, 3):
                    plt.imshow(X_train[count-1], interpolation='nearest')
                else:
                    raise Exception("Do not support the given 'shape' to plot the image examples")
                plt.gca().xaxis.set_major_locator(plt.NullLocator())    # 不显示刻度(tick)
                plt.gca().yaxis.set_major_locator(plt.NullLocator())
                count = count + 1
        plt.draw()      # interactive mode
        plt.pause(3)   # interactive mode

        print("X_train:",X_train.shape)
        print("y_train:",y_train.shape)
        print("X_test:",X_test.shape)
        print("y_test:",y_test.shape)

    X_train = np.asarray(X_train, dtype=np.float32)
    X_test = np.asarray(X_test, dtype=np.float32)
    y_train = np.asarray(y_train, dtype=np.int32)
    y_test = np.asarray(y_test, dtype=np.int32)

    return X_train, y_train, X_test, y_test