Exemplo n.º 1
0
def _make_data_gen(hypes, phase, data_dir):
    """Return a data generator that outputs image samples.

    @ Returns
    image: integer array of shape [width, height, 3].
    Representing RGB value of each pixel.
    gt_image: boolean array of shape [width, height, num_classes].
    Set `gt_image[i,j,k] == 1` if and only if pixel i,j
    is assigned class k. `gt_image[i,j,k] == 0` otherwise.

    [Alternativly make gt_image[i,j,*] a valid propability
    distribution.]
    """
    if phase == 'train':
        data_file = hypes['data']["train_file"]
    elif phase == 'val':
        data_file = hypes['data']["val_file"]
    else:
        assert False, "Unknown Phase %s" % phase

    data_file = os.path.join(data_dir, data_file)
    data = _load_gt_file(hypes, data_file)

    for image, gt_image in data:
        if phase == 'val':
            yield image, utils.load_segmentation_mask(hypes,
                                                      gt_image)[:, :, :-1]
        elif phase == 'train':
            image, gt_image = jitter_input(hypes, image, gt_image)
            yield image, utils.load_segmentation_mask(hypes,
                                                      gt_image)[:, :, :-1]
            image, gt_image = jitter_input(hypes, np.fliplr(image),
                                           np.fliplr(gt_image))
            yield image, utils.load_segmentation_mask(hypes,
                                                      gt_image)[:, :, :-1]
Exemplo n.º 2
0
def get_class_distribution(hypes, labeled_dataset):
    """
    Get the distribution of classes in a labeled dataset.

    Parameters
    ----------
    hypes : dict
        The hyperparameters have to specify 'classes'.
    labeled_dataset : list of dicts
        Each dict has to have the keys 'raw' and 'mask' which have the absolute
        path to image files.

    Returns
    -------
    dict
        Mapping class indices according to hypes['classes'] to pixel counts.
    """
    classes = {}
    for item in labeled_dataset:
        im = utils.load_segmentation_mask(hypes, item['mask'])
        for y in range(im.shape[0]):
            for x in range(im.shape[1]):
                cl = im[y][x]
                if cl in classes:
                    classes[cl] += 1
                else:
                    classes[cl] = 1
    return classes
Exemplo n.º 3
0
def main(hypes_file, output_dir, override):
    """
    Orchestrate.

    Parameters
    ----------
    hypes_file : str
        Path to a JSON file
    output_dir : str
        Path where the output should be stored
    override : bool
        If True, then override the model if it exists.
    """
    # Load hyperparameters
    with open(hypes_file, 'r') as f:
        hypes = json.load(f)

    # Set serialization path
    base = os.path.dirname(hypes_file)
    model_file_path = os.path.join(base, '%s.json' % hypes['model']['name'])
    model_file_path = os.path.abspath(model_file_path)

    if not os.path.isfile(model_file_path) or override:
        if not os.path.isfile(model_file_path):
            logging.info("Did not find '%s'. Start training...",
                         model_file_path)
        else:
            logging.info("Override '%s'. Start training...",
                         model_file_path)

        # Get training data
        x_files, y_files = get_file_list(hypes, 'train')

        # "Train" "classifier" (it just counts the classes)
        model = {}
        for i in range(len(hypes['classes'])):
            model[i] = 0

        for y_file in y_files:
            logging.info("Read '%s'...", y_file)
            mask = load_segmentation_mask(hypes, y_file)
            for row in mask:
                for pixel in row:
                    model[pixel] += 1

        # save model as json file
        with open(model_file_path, 'w') as f:
            json.dump(model, f)
    else:
        # load model from json file
        with open(model_file_path) as f:
            model = json.load(f)
    # Evaluate
    data = get_file_list(hypes, 'test')
    analyze.evaluate(hypes,
                     data,
                     output_dir,
                     model,
                     elements=[0, 1],
                     get_segmentation=get_segmentation)
Exemplo n.º 4
0
def eval_image(hypes, gt_image, cnn_image):
    """."""
    thresh = np.array(range(0, 256))/255.0

    valid_gt = utils.load_segmentation_mask(hypes, gt_image)[:, :, :-1]

    return seg.evalExp(hypes, valid_gt, cnn_image)
Exemplo n.º 5
0
def main(hypes_file, output_dir, override):
    """
    Orchestrate.

    Parameters
    ----------
    hypes_file : str
        Path to a JSON file
    output_dir : str
        Path where the output should be stored
    override : bool
        If True, then override the model if it exists.
    """
    # Load hyperparameters
    with open(hypes_file, 'r') as f:
        hypes = json.load(f)

    # Set serialization path
    base = os.path.dirname(hypes_file)
    model_file_path = os.path.join(base, '%s.pickle' % hypes['model']['name'])
    model_file_path = os.path.abspath(model_file_path)

    if not os.path.isfile(model_file_path) or override:
        if not os.path.isfile(model_file_path):
            logging.info("Did not find '%s'. Start training...",
                         model_file_path)
        else:
            logging.info("Override '%s'. Start training...", model_file_path)

        # Get training data
        x_files, y_files = get_file_list(hypes, 'train')

        # "Train" "classifier" (it just counts the classes)
        model = {'positions': None, 'files': 0}

        for y_file in y_files:
            logging.info("Read '%s'...", y_file)
            mask = load_segmentation_mask(hypes, y_file)
            if model['positions'] is None:
                model['positions'] = mask
            else:
                model['positions'] += mask
            model['files'] += 1

        # save model as pickle file
        scipy.misc.imsave("instruments.png", model['positions'])
        with open(model_file_path, 'wb') as handle:
            pickle.dump(model, handle, protocol=pickle.HIGHEST_PROTOCOL)
    else:
        # load model from pickle file
        with open(model_file_path, 'rb') as handle:
            model = pickle.load(handle)
    # Evaluate
    data = get_file_list(hypes, 'test')
    analyze.evaluate(hypes,
                     data,
                     output_dir,
                     model,
                     elements=[0, 1],
                     get_segmentation=get_segmentation)
Exemplo n.º 6
0
def get_traindata_single_file(hypes, x, y):
    """Get trainingdata for a single file x with segmentation file y."""
    xs, ys = [], []
    logging.info("Read '%s' for data...", x)
    label = load_segmentation_mask(hypes, y)
    im = Image.open(x, 'RGB')
    width, height, _ = im.size
    for x in range(width):
        for y in range(height):
            image_val = get_features(hypes, im, 'data')
            label_val = label[y][x]

            xs.append(image_val)
            ys.append(label_val)
    return numpy.array(xs), numpy.array(ys, dtype=int)
Exemplo n.º 7
0
def get_traindata_single_file(hypes, x, y):
    """Get trainingdata for a single file x with segmentation file y."""
    xs, ys = [], []
    logging.info("Read '%s' for data...", x)
    label = load_segmentation_mask(hypes, y)
    im = Image.open(x, 'RGB')
    width, height, _ = im.size
    for x in range(width):
        for y in range(height):
            image_val = get_features(hypes, im, 'data')
            label_val = label[y][x]

            xs.append(image_val)
            ys.append(label_val)
    return numpy.array(xs), numpy.array(ys, dtype=int)
Exemplo n.º 8
0
def test_load_segmentation_mask():
    """Test load_segmentation_mask."""
    from tensorvision.utils import load_segmentation_mask
    import json
    import scipy.misc
    import numpy
    import os
    hypes_path = os.path.abspath('tensorvision/tests/croco.json')
    seg_image = os.path.abspath('tensorvision/tests/croco-mask.png')
    with open(hypes_path) as f:
        hypes = json.load(f)
    gt = load_segmentation_mask(hypes, seg_image)
    # scipy.misc.imsave("tensorvision/tests/test-generated-mask.png", gt)
    seg_image = 'tensorvision/tests/Crocodylus-johnsoni-3-mask.png'
    true_gt = (scipy.misc.imread(seg_image) / 255.).astype(int)
    numpy.testing.assert_array_equal(true_gt, gt)
    assert gt.shape == (480, 640)
Exemplo n.º 9
0
def test_load_segmentation_mask():
    """Test load_segmentation_mask."""
    from tensorvision.utils import load_segmentation_mask
    import json
    import scipy.misc
    import numpy
    import os
    hypes_path = os.path.abspath('tensorvision/tests/croco.json')
    seg_image = os.path.abspath('tensorvision/tests/croco-mask.png')
    with open(hypes_path) as f:
        hypes = json.load(f)
    gt = load_segmentation_mask(hypes, seg_image)
    # scipy.misc.imsave("tensorvision/tests/test-generated-mask.png", gt)
    seg_image = 'tensorvision/tests/Crocodylus-johnsoni-3-mask.png'
    true_gt = (scipy.misc.imread(seg_image) / 255.).astype(int)
    numpy.testing.assert_array_equal(true_gt, gt)
    assert gt.shape == (480, 640)
Exemplo n.º 10
0
def generate_batch(hypes, phase):
    """
    Generate patches.

    Parameters
    ----------
    hypes : dict
    phase : 'train' or 'test'
    """
    x_files, y_files = get_file_list(hypes, phase)
    x_files, y_files = sklearn.utils.shuffle(x_files,
                                             y_files,
                                             random_state=0)
    batch_x, batch_y = [], []
    while True:
        for x, y in zip(x_files, y_files):
            logging.info("Read '%s' for data...", x)
            image = get_image(x, 'RGB')
            label = load_segmentation_mask(hypes, y)
            im = Image.open(x, 'r')
            width, height = im.size
            image_vals = get_features(hypes, image, 'data')
            label_vals = get_features(hypes, label, 'label')
            # print("image_vals = %s" % str(list(image_vals)))
            for patch, label_ in zip(image_vals, label_vals):
                patch = img_to_array(patch)
                label_ = img_to_array(label_)
                _, w, h = label_.shape
                label_ = label_.reshape((w, h))
                if phase == 'val' and 1.0 not in label_:
                    print("continue")
                    continue
                # scipy.misc.imshow(patch)
                # scipy.misc.imshow(label_)
                batch_x.append(patch)
                batch_y.append(label_)  # .flatten()
                if len(batch_x) == hypes['solver']['batch_size']:
                    yield (np.array(batch_x), np.array(batch_y))
                    batch_x, batch_y = [], []
Exemplo n.º 11
0
def inputs(hypes, _, phase, data_dir):
    """
    Get data.

    Parameters
    ----------
    hypes : dict
    _ : ignore this
    phase : {'train', 'val'}
    data_dir : str

    Returns
    -------
    tuple
        (xs, ys), where xs and ys are lists of the same length.
        xs are paths to the input images and ys are paths to the expected
        output
    """
    x_files, y_files = get_file_list(hypes, 'train')
    x_files, y_files = sklearn.utils.shuffle(x_files,
                                             y_files,
                                             random_state=0)

    xs, ys = [], []
    for x, y in zip(x_files, y_files):
        logging.info("Read '%s' for data...", x)
        image = get_image(x, 'RGB')
        label = load_segmentation_mask(hypes, y)
        im = Image.open(x, 'r')
        width, height = im.size
        for x in range(width):
            for y in range(height):
                image_val = get_features(x, y, image, hypes['model_nr'])
                label_val = label[y][x]

                xs.append(image_val)
                ys.append(label_val)
    return xs, np.array(ys, dtype=int)
Exemplo n.º 12
0
def generate_batch(hypes, phase):
    """
    Generate patches.

    Parameters
    ----------
    hypes : dict
    phase : 'train' or 'test'
    """
    x_files, y_files = get_file_list(hypes, phase)
    x_files, y_files = sklearn.utils.shuffle(x_files, y_files, random_state=0)
    batch_x, batch_y = [], []
    while True:
        for x, y in zip(x_files, y_files):
            logging.info("Read '%s' for data...", x)
            image = get_image(x, 'RGB')
            label = load_segmentation_mask(hypes, y)
            im = Image.open(x, 'r')
            width, height = im.size
            image_vals = get_features(hypes, image, 'data')
            label_vals = get_features(hypes, label, 'label')
            # print("image_vals = %s" % str(list(image_vals)))
            for patch, label_ in zip(image_vals, label_vals):
                patch = img_to_array(patch)
                label_ = img_to_array(label_)
                _, w, h = label_.shape
                label_ = label_.reshape((w, h))
                if phase == 'val' and 1.0 not in label_:
                    print("continue")
                    continue
                # scipy.misc.imshow(patch)
                # scipy.misc.imshow(label_)
                batch_x.append(patch)
                batch_y.append(label_)  # .flatten()
                if len(batch_x) == hypes['solver']['batch_size']:
                    yield (np.array(batch_x), np.array(batch_y))
                    batch_x, batch_y = [], []
Exemplo n.º 13
0
def main(hypes_file, output_dir, override):
    """
    Orchestrate.

    Parameters
    ----------
    hypes_file : str
        Path to a JSON file
    output_dir : str
        Path where the output should be stored
    override : bool
        If True, then override the model if it exists.
    """
    # Load hyperparameters
    with open(hypes_file, 'r') as f:
        hypes = json.load(f)

    # Set serialization path
    base = os.path.dirname(hypes_file)
    model_file_path = os.path.join(base, '%s.pickle' % hypes['model']['name'])
    model_file_path = os.path.abspath(model_file_path)

    if not os.path.isfile(model_file_path) or override:
        if not os.path.isfile(model_file_path):
            logging.info("Did not find '%s'. Start training...",
                         model_file_path)
        else:
            logging.info("Override '%s'. Start training...",
                         model_file_path)

        # Get training data
        x_files, y_files = get_file_list(hypes, 'train')

        # "Train" "classifier" (it just counts the classes)
        model = {'positions': None, 'files': 0}

        for y_file in y_files:
            logging.info("Read '%s'...", y_file)
            mask = load_segmentation_mask(hypes, y_file)
            if model['positions'] is None:
                model['positions'] = mask
            else:
                model['positions'] += mask
            model['files'] += 1

        # save model as pickle file
        scipy.misc.imsave("instruments.png", model['positions'])
        with open(model_file_path, 'wb') as handle:
            pickle.dump(model, handle, protocol=pickle.HIGHEST_PROTOCOL)
    else:
        # load model from pickle file
        with open(model_file_path, 'rb') as handle:
            model = pickle.load(handle)
    # Evaluate
    data = get_file_list(hypes, 'test')
    analyze.evaluate(hypes,
                     data,
                     output_dir,
                     model,
                     elements=[0, 1],
                     get_segmentation=get_segmentation)
Exemplo n.º 14
0
def evaluate(hypes,
             data,
             out_dir,
             model,
             elements,
             get_segmentation,
             verbose=True):
    """
    Analyze how well a model does on given data.

    Parameters
    ----------
    hypes : dict
        Hyperparameters (model specific information)
    data : tuple
        (x_files, y_files) where x_files and y_files are lists of strings
    out_dir : str
        Path to the directory where the output gets stored
    model : object
    elements : iterable
        A list / set or another iterable which contains the possible
        segmentation classes (commonly 0 and 1)
    get_segmentation : function
        Takes a string and a model the model as input and returns a numpy
        array. The string is the path to an image file.
    load_label_seg : function
        Takes a path as a string and returns a segmentation mask as a numpy
        array.
    verbose : bool
        Print messages when in verbose mode.
    """
    # Initialize confusion matrix
    cm = {}
    for i in elements:
        cm[i] = {}
        for j in elements:
            cm[i][j] = 0
    # Initialize timings for segmentation
    times = []
    i = 1
    for xfile, yfile in zip(*data):
        if verbose:
            logging.info("Segmentation of '%s'...", xfile)
            logging.info("    label='%s'...", yfile)
        t0 = time.time()
        segmentation = get_segmentation(hypes, xfile, model)
        t1 = time.time()
        times.append(t1 - t0)
        correct_seg = load_segmentation_mask(hypes, yfile)
        cm_tmp = get_confusion_matrix(correct_seg, segmentation, elements)
        color_changes = get_color_changes_dict(hypes)
        gen_img_and_overlay(xfile, segmentation, out_dir, color_changes, i)
        cm = merge_cms(cm, cm_tmp)
        if verbose:
            show_metrics(cm, indentation=4)
            print("    time: %0.4fs" % (t1 - t0))
        i += 1
    if verbose:
        show_metrics(cm)
        print("Average time: %0.4f" % (sum(times) / len(times)))
    return {'cm': cm, 'times': times}