Exemplo n.º 1
0
    def setup(self):
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # turbine part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        so = Source('inlet')
        tu = Turbine('compressor')
        si = Sink('outlet')

        # fuel exergy bus
        self.exergy_fuel = Bus('fuel exergy')
        self.exergy_fuel.add_comps({'comp': si}, {'comp': so, 'base': 'bus'})
        # product exergy bus
        self.exergy_prod = Bus('product exergy')
        self.exergy_prod.add_comps({'comp': tu, 'char': 0.9})

        # create connections
        c1 = Connection(so, 'out1', tu, 'in1', '1')
        c2 = Connection(tu, 'out1', si, 'in1', '2')
        self.nw.add_conns(c1, c2)

        # component parameters
        tu.set_attr(eta_s=0.85, pr=1 / 5)

        # connection parameters
        c1.set_attr(m=2, p=10, fluid={'Air': 1})
        c2.set_attr(T=self.Tamb)

        # solve network
        self.nw.solve('design')
Exemplo n.º 2
0
    def test_exergy_analysis_violated_balance(self):
        """Test exergy analysis with violated balance."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # miss out on internal bus in exergy_analysis
        ean = ExergyAnalysis(self.nw, E_P=[self.power], E_F=[self.heat])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be violated for this test (larger than ' +
               str(err**0.5) + ') but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) > err**0.5, msg
Exemplo n.º 3
0
    def test_exergy_analysis_plotting_data(self):
        """Test exergy analysis plotting."""
        self.nw.get_comp('steam generator').set_attr(pr=0.9)
        self.nw.get_comp('turbine').set_attr(eta_s=0.9)
        self.nw.get_comp('feed water pump turbine').set_attr(eta_s=0.85)
        self.nw.get_comp('pump').set_attr(eta_s=0.75)
        self.nw.get_conn('cond').set_attr(T=self.Tamb + 3)

        # specify efficiency values for the internal bus and power bus
        self.nw.del_busses(self.fwp_power, self.power)

        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.power = Bus('power_output')
        self.power.add_comps({
            'comp': self.nw.get_comp('turbine'),
            'char': 0.98
        })

        self.nw.add_busses(self.fwp_power, self.power)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg

        nodes = [
            'E_F', 'steam generator', 'splitter 1', 'feed water pump turbine',
            'turbine', 'merge 1', 'condenser', 'pump', 'E_D', 'E_P'
        ]

        links, nodes = ean.generate_plotly_sankey_input(node_order=nodes)
        # checksum for targets and source
        checksum = sum(links['target'] + links['source'])
        msg = ('The checksum of all target and source values in the link lists'
               'must be 148, but is ' + str(checksum) + '.')
        assert 148 == checksum, msg
Exemplo n.º 4
0
class TestCompressedAirIn:
    def setup(self):
        """Set up air compressor."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # compressor part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        amb = Source('air intake')
        cp = Compressor('compressor')
        cooler = HeatExchangerSimple('cooling')
        cas = Sink('compressed air storage')

        # power input bus
        self.power_in = Bus('power input')
        self.power_in.add_comps({'comp': cp, 'char': 1, 'base': 'bus'})
        # compressed air bus (not sure about this!)
        self.cas_in = Bus('massflow into storage')
        self.cas_in.add_comps({'comp': cas}, {'comp': amb, 'base': 'bus'})
        self.nw.add_busses(self.power_in, self.cas_in)

        # create connections
        amb_cp = Connection(amb, 'out1', cp, 'in1')
        cp_cool = Connection(cp, 'out1', cooler, 'in1')
        cool_cas = Connection(cooler, 'out1', cas, 'in1')
        self.nw.add_conns(amb_cp, cp_cool, cool_cas)

        # component parameters
        cp.set_attr(eta_s=1)
        cooler.set_attr(pr=1)

        # connection parameters
        amb_cp.set_attr(m=2, T=self.Tamb, p=self.pamb, fluid={'Air': 1})
        cool_cas.set_attr(T=self.Tamb, p=10)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis at product exergy with T < Tamb."""
        self.nw.exergy_analysis(self.pamb,
                                self.Tamb,
                                E_P=[self.cas_in],
                                E_F=[self.power_in])

        exergy_balance = (self.nw.E_F - self.nw.E_P - self.nw.E_L -
                          self.nw.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg
Exemplo n.º 5
0
def test_wrong_Bus_param_func():
    """Test missing/wrong bus parameter specification in equations."""
    # this test does not need setup, since the function is called without
    # network initialisation
    instance = WaterElectrolyzer('electrolyzer')
    some_bus = Bus('some_bus')
    param = 'G'
    some_bus.add_comps({'comp': instance, 'param': param})
    with raises(ValueError):
        instance.bus_func(some_bus.comps.loc[instance])
Exemplo n.º 6
0
def test_wrong_Bus_param_deriv():
    """Test missing/wrong bus parameter specification in derivatives."""
    # this test does not need setup, since the function is called without
    # network initialisation
    instance = WaterElectrolyzer('electrolyzer')
    # required for calling bus_deriv method without network initialisation
    instance.num_vars = 1
    instance.num_nw_fluids = 1
    instance.num_nw_vars = 1
    some_bus = Bus('some_bus')
    param = 'G'
    some_bus.add_comps({'comp': instance, 'param': param})
    with raises(ValueError):
        instance.bus_deriv(some_bus)
Exemplo n.º 7
0
def test_Bus_add_comps_errors():
    """Test errors adding components to busses."""
    mybus = Bus('mybus')
    comb = CombustionEngine('combustion engine')
    pipeline = Pipe('pipeline')
    conn = Connection(comb, 'out1', pipeline, 'in1')
    bus_add_comps_TypeError(mybus, {'comp': conn})
    bus_add_comps_TypeError(mybus, {'f': comb})
    bus_add_comps_TypeError(mybus, {'comp': comb, 'char': 'Hi'})
    bus_add_comps_TypeError(mybus, {'comp': comb, 'param': 5})
    bus_add_comps_TypeError(mybus, {'comp': comb, 'P_ref': 'what'})
    bus_add_comps_TypeError(mybus, comb)

    with raises(ValueError):
        mybus.add_comps({'comp': comb, 'base': 5})
Exemplo n.º 8
0
def test_set_attr_errors():
    """Test errors of set_attr methods."""
    nw = Network(['water', 'air'])
    comb = CombustionEngine('combustion engine')
    pipeline = Pipe('pipeline')
    conn = Connection(comb, 'out1', pipeline, 'in1')
    mybus = Bus('mybus')

    # ValueErrors
    set_attr_ValueError(comb, offdesign=['Q'])

    set_attr_ValueError(conn, offdesign=['f'])

    set_attr_ValueError(nw, m_unit='kg')
    set_attr_ValueError(nw, h_unit='kg')
    set_attr_ValueError(nw, p_unit='kg')
    set_attr_ValueError(nw, T_unit='kg')
    set_attr_ValueError(nw, v_unit='kg')
    set_attr_ValueError(conn, state=5)

    # TypeErrors
    set_attr_TypeError(comb, P=[5])
    set_attr_TypeError(comb, P=[5])
    set_attr_TypeError(comb, tiP_char=7)
    set_attr_TypeError(comb, design='f')
    set_attr_TypeError(comb, lamb=dc_cc())
    set_attr_TypeError(comb, design_path=7)
    set_attr_TypeError(comb, local_design=5)
    set_attr_TypeError(comb, local_offdesign=5)
    set_attr_TypeError(pipeline, hydro_group=5)
    set_attr_TypeError(comb, printout=5)

    set_attr_TypeError(conn, design='h')
    set_attr_TypeError(conn, fluid_balance=1)
    set_attr_TypeError(conn, h0=[4])
    set_attr_TypeError(conn, fluid=5)
    set_attr_TypeError(conn, design_path=5)
    set_attr_TypeError(conn, local_design=5)
    set_attr_TypeError(conn, local_offdesign=5)
    set_attr_TypeError(conn, printout=5)
    set_attr_TypeError(conn, state='f')

    set_attr_TypeError(nw, m_range=5)
    set_attr_TypeError(nw, p_range=5)
    set_attr_TypeError(nw, h_range=5)
    set_attr_TypeError(nw, iterinfo=5)
    set_attr_TypeError(mybus, P='some value')
    set_attr_TypeError(mybus, printout=5)

    # KeyErrors
    set_attr_KeyError(dc_cc(), x=7)
    set_attr_KeyError(comb, wow=5)
    set_attr_KeyError(conn, jey=5)
    set_attr_KeyError(mybus, power_output=100000)

    # NotImplementedError
    set_attr_NotImplementedError(conn, Td_bp=Ref(conn, 1, 0))
Exemplo n.º 9
0
    def setup(self):
        """Set up air compressor."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # compressor part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        amb = Source('air intake')
        cp = Compressor('compressor')
        cooler = HeatExchangerSimple('cooling')
        cas = Sink('compressed air storage')

        # power input bus
        self.power_in = Bus('power input')
        self.power_in.add_comps({'comp': cp, 'char': 1, 'base': 'bus'})
        # compressed air bus (not sure about this!)
        self.cas_in = Bus('massflow into storage')
        self.cas_in.add_comps({'comp': cas}, {'comp': amb, 'base': 'bus'})
        self.nw.add_busses(self.power_in, self.cas_in)

        # create connections
        amb_cp = Connection(amb, 'out1', cp, 'in1')
        cp_cool = Connection(cp, 'out1', cooler, 'in1')
        cool_cas = Connection(cooler, 'out1', cas, 'in1')
        self.nw.add_conns(amb_cp, cp_cool, cool_cas)

        # component parameters
        cp.set_attr(eta_s=1)
        cooler.set_attr(pr=1)

        # connection parameters
        amb_cp.set_attr(m=2, T=self.Tamb, p=self.pamb, fluid={'Air': 1})
        cool_cas.set_attr(T=self.Tamb, p=10)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
Exemplo n.º 10
0
    def setup(self):
        """Set up clausis rankine cycle with turbine driven feed water pump."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['water']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # create components
        splitter1 = Splitter('splitter 1')
        merge1 = Merge('merge 1')
        turb = Turbine('turbine')
        fwp_turb = Turbine('feed water pump turbine')
        condenser = HeatExchangerSimple('condenser')
        fwp = Pump('pump')
        steam_generator = HeatExchangerSimple('steam generator')
        cycle_close = CycleCloser('cycle closer')

        # create busses
        # power output bus
        self.power = Bus('power_output')
        self.power.add_comps({'comp': turb, 'char': 1})
        # turbine driven feed water pump internal bus
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {'comp': fwp_turb, 'char': 1},
            {'comp': fwp, 'char': 1, 'base': 'bus'})
        # heat input bus
        self.heat = Bus('heat_input')
        self.heat.add_comps({'comp': steam_generator, 'base': 'bus'})
        self.nw.add_busses(self.power, self.fwp_power, self.heat)

        # create connections
        fs_in = Connection(cycle_close, 'out1', splitter1, 'in1', label='fs')
        fs_fwpt = Connection(splitter1, 'out1', fwp_turb, 'in1')
        fs_t = Connection(splitter1, 'out2', turb, 'in1')
        fwpt_ws = Connection(fwp_turb, 'out1', merge1, 'in1')
        t_ws = Connection(turb, 'out1', merge1, 'in2')
        ws = Connection(merge1, 'out1', condenser, 'in1')
        cond = Connection(condenser, 'out1', fwp, 'in1', label='cond')
        fw = Connection(fwp, 'out1', steam_generator, 'in1', label='fw')
        fs_out = Connection(steam_generator, 'out1', cycle_close, 'in1')
        self.nw.add_conns(fs_in, fs_fwpt, fs_t, fwpt_ws, t_ws, ws, cond, fw,
                          fs_out)

        # component parameters
        turb.set_attr(eta_s=1)
        fwp_turb.set_attr(eta_s=1)
        condenser.set_attr(pr=1)
        fwp.set_attr(eta_s=1)
        steam_generator.set_attr(pr=1)

        # connection parameters
        fs_in.set_attr(m=10, p=120, T=600, fluid={'water': 1})
        cond.set_attr(T=self.Tamb, x=0)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
Exemplo n.º 11
0
class TestCombustionEngineBusErrors:

    def setup(self):
        self.nw = Network(['water', 'air'])
        self.instance = CombustionEngine('combustion engine')
        self.bus = Bus('power')
        self.bus.add_comps({'comp': self.instance, 'param': 'Param'})

    def test_missing_Bus_param_func(self):
        """Test wrong/missing bus parameter in bus function."""
        with raises(ValueError):
            self.instance.bus_func(self.bus.comps.loc[self.instance])

    def test_missing_Bus_param_deriv(self):
        """Test wrong/missing bus parameter in bus derivatives."""
        # both values do not matter, but are required for the test
        self.instance.num_nw_vars = 1
        self.instance.num_vars = 1
        self.instance.inl = [Connection(self.instance, 'out1',
                                        Sink('sink'), 'in1')]
        self.instance.inl[0].fluid = dc_flu(val={'water': 1})
        with raises(ValueError):
            self.instance.bus_deriv(self.bus)
Exemplo n.º 12
0
    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis bus conversion factors."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # no exergy losses in this case
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        label = 'pump'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = ('Pump exergy efficiency must be 0.98 but is ' +
               str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.98, msg

        label = 'feed water pump turbine'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = (
            'Feed water pump turbine exergy efficiency must be 0.99 but is ' +
            str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.99, msg
Exemplo n.º 13
0
def construct_busses(c, *args):
    r"""
    Create busses of the network.

    Parameters
    ----------
    c : pandas.core.series.Series
        Bus information from .csv-file.

    Returns
    -------
    b : tespy.connections.bus.Bus
        TESPy bus object.
    """
    # set up bus with label and specify value for power
    b = Bus(c.label, P=c.P)
    b.P.is_set = c.P_set
    return b
Exemplo n.º 14
0
def test_get_attr_errors():
    """Test errors of get_attr methods."""
    nw = Network(['water', 'air'])
    comb = CombustionEngine('combustion engine')
    pipeline = Pipe('pipeline')
    conn = Connection(comb, 'out1', pipeline, 'in1')
    mybus = Bus('mybus')
    sub = Subsystem('MySub')

    get_attr_KeyError(comb, 'wow')
    get_attr_KeyError(conn, 'key')
    get_attr_KeyError(mybus, 'components')
    get_attr_KeyError(nw, 'missing')
    get_attr_KeyError(Ref(conn, 1, 0), 'comp')
    get_attr_KeyError(sub, 'test')
    get_attr_KeyError(CharLine(), 'test')
    get_attr_KeyError(DataContainer(), 'somekey')
    get_attr_KeyError(CharMap(), 'Stuff')
Exemplo n.º 15
0
    def setup(self):
        """Set up air compressed air turbine."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # turbine part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        cas = Source('compressed air storage')
        reheater = HeatExchangerSimple('reheating')
        turb = Turbine('turbine')
        amb = Sink('air outlet')

        # power ouput bus
        self.power_out = Bus('power output')
        self.power_out.add_comps({'comp': turb, 'char': 1})
        # compressed air bus
        self.cas_out = Bus('exergy in')
        self.cas_out.add_comps({
            'comp': cas,
            'base': 'bus'
        }, {
            'comp': reheater,
            'base': 'bus'
        })
        # exergy loss bus
        self.ex_loss = Bus('exergy loss')
        self.ex_loss.add_comps({'comp': amb, 'base': 'component'})
        self.nw.add_busses(self.power_out, self.cas_out)

        # create connections
        cas_reheater = Connection(cas, 'out1', reheater, 'in1')
        reheater_turb = Connection(reheater, 'out1', turb, 'in1')
        turb_amb = Connection(turb, 'out1', amb, 'in1', label='outlet')
        self.nw.add_conns(cas_reheater, reheater_turb, turb_amb)

        # component parameters
        turb.set_attr(eta_s=1)
        reheater.set_attr(pr=1)

        # connection parameters
        cas_reheater.set_attr(m=2, T=self.Tamb, p=10, fluid={'Air': 1})
        reheater_turb.set_attr()
        turb_amb.set_attr(p=self.pamb, T=self.Tamb)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
Exemplo n.º 16
0
    def test_CombustionChamber(self):
        """
        Test component properties of combustion chamber.
        """
        instance = CombustionChamber('combustion chamber')
        self.setup_CombustionChamber_network(instance)

        # connection parameter specification
        air = {
            'N2': 0.7556,
            'O2': 0.2315,
            'Ar': 0.0129,
            'H2O': 0,
            'CO2': 0,
            'CH4': 0
        }
        fuel = {'N2': 0, 'O2': 0, 'Ar': 0, 'H2O': 0, 'CO2': 0.04, 'CH4': 0.96}
        self.c1.set_attr(fluid=air, p=1, T=30)
        self.c2.set_attr(fluid=fuel, T=30)
        self.c3.set_attr(T=1200)

        # test specified bus value on CombustionChamber (must be equal to ti)
        b = Bus('thermal input', P=1e6)
        b.add_comps({'comp': instance})
        self.nw.add_busses(b)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of thermal input must be ' + str(b.P.val) + ', is ' +
               str(instance.ti.val) + '.')
        assert round(b.P.val, 1) == round(instance.ti.val, 1), msg
        b.set_attr(P=np.nan)

        # test specified thermal input for CombustionChamber
        instance.set_attr(ti=1e6)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        ti = (self.c2.m.val_SI * self.c2.fluid.val['CH4'] *
              instance.fuels['CH4']['LHV'])
        msg = ('Value of thermal input must be ' + str(instance.ti.val) +
               ', is ' + str(ti) + '.')
        assert round(ti, 1) == round(instance.ti.val, 1), msg

        # test specified lamb for CombustionChamber
        self.c3.set_attr(T=np.nan)
        instance.set_attr(lamb=1)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of oxygen in flue gas must be 0.0, is ' +
               str(round(self.c3.fluid.val['O2'], 4)) + '.')
        assert 0.0 == round(self.c3.fluid.val['O2'], 4), msg
Exemplo n.º 17
0
    def setup(self):
        """Set up simple refrigerator."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['R134a']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # create components
        va = Valve('expansion valve')
        cp = Compressor('compressor')
        cond = HeatExchangerSimple('condenser')
        eva = HeatExchangerSimple('evaporator')
        cc = CycleCloser('cycle closer')

        # create busses
        # power output bus
        self.power = Bus('power input')
        self.power.add_comps({'comp': cp, 'char': 1, 'base': 'bus'})
        # cooling bus
        self.cool = Bus('heat from fridge')
        self.cool.add_comps({'comp': eva})
        # heat input bus
        self.heat = Bus('heat to ambient')
        self.heat.add_comps({'comp': cond})
        self.nw.add_busses(self.power, self.cool, self.heat)

        # create connections
        cc_cp = Connection(cc, 'out1', cp, 'in1', label='from eva')
        cp_cond = Connection(cp, 'out1', cond, 'in1', label='to cond')
        cond_va = Connection(cond, 'out1', va, 'in1', label='from cond')
        va_eva = Connection(va, 'out1', eva, 'in1', label='to eva')
        eva_cc = Connection(eva, 'out1', cc, 'in1')
        self.nw.add_conns(cc_cp, cp_cond, cond_va, va_eva, eva_cc)

        # component parameters
        cp.set_attr(eta_s=0.9)
        cond.set_attr(pr=0.97)
        eva.set_attr(pr=0.96)

        # connection parameters
        cc_cp.set_attr(m=1, x=1, T=-25, fluid={'R134a': 1})
        cond_va.set_attr(x=0, T=self.Tamb + 1)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
Exemplo n.º 18
0
cd_hs_feed.set_attr(T=40, p=2, fluid={'water': 1, 'R410A': 0})
hs_ret_hsp.set_attr(T=35, p=2)

# starting values
va_ev.set_attr(h0=275)
cc_cd.set_attr(p0=18)

# %% create busses

# characteristic function for motor efficiency
x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4])
y = np.array([0, 0.86, 0.9, 0.93, 0.95, 0.96, 0.95, 0.93])

# power bus
char = CharLine(x=x, y=y)
power = Bus('power input')
power.add_comps({
    'comp': cp,
    'char': char,
    'base': 'bus'
}, {
    'comp': ghp,
    'char': char,
    'base': 'bus'
}, {
    'comp': hsp,
    'char': char,
    'base': 'bus'
})

# consumer heat bus
    def __init__(self):
        self.nw = Network(fluids=['BICUBIC::water'],
                          p_unit='bar',
                          T_unit='C',
                          h_unit='kJ / kg',
                          iterinfo=False)
        # components
        # main cycle
        eco = HeatExchangerSimple('economizer')
        eva = HeatExchangerSimple('evaporator')
        sup = HeatExchangerSimple('superheater')
        cc = CycleCloser('cycle closer')
        hpt = Turbine('high pressure turbine')
        sp1 = Splitter('splitter 1', num_out=2)
        mpt = Turbine('mid pressure turbine')
        sp2 = Splitter('splitter 2', num_out=2)
        lpt = Turbine('low pressure turbine')
        con = Condenser('condenser')
        pu1 = Pump('feed water pump')
        fwh1 = Condenser('feed water preheater 1')
        fwh2 = Condenser('feed water preheater 2')
        dsh = Desuperheater('desuperheater')
        me2 = Merge('merge2', num_in=2)
        pu2 = Pump('feed water pump 2')
        pu3 = Pump('feed water pump 3')
        me = Merge('merge', num_in=2)

        # cooling water
        cwi = Source('cooling water source')
        cwo = Sink('cooling water sink')

        # connections
        # main cycle
        cc_hpt = Connection(cc, 'out1', hpt, 'in1', label='feed steam')
        hpt_sp1 = Connection(hpt, 'out1', sp1, 'in1', label='extraction1')
        sp1_mpt = Connection(sp1, 'out1', mpt, 'in1', state='g')
        mpt_sp2 = Connection(mpt, 'out1', sp2, 'in1', label='extraction2')
        sp2_lpt = Connection(sp2, 'out1', lpt, 'in1')
        lpt_con = Connection(lpt, 'out1', con, 'in1')
        con_pu1 = Connection(con, 'out1', pu1, 'in1')
        pu1_fwh1 = Connection(pu1, 'out1', fwh1, 'in2')
        fwh1_me = Connection(fwh1, 'out2', me, 'in1', state='l')
        me_fwh2 = Connection(me, 'out1', fwh2, 'in2', state='l')
        fwh2_dsh = Connection(fwh2, 'out2', dsh, 'in2', state='l')
        dsh_me2 = Connection(dsh, 'out2', me2, 'in1')
        me2_eco = Connection(me2, 'out1', eco, 'in1', state='l')
        eco_eva = Connection(eco, 'out1', eva, 'in1')
        eva_sup = Connection(eva, 'out1', sup, 'in1')
        sup_cc = Connection(sup, 'out1', cc, 'in1')

        self.nw.add_conns(cc_hpt, hpt_sp1, sp1_mpt, mpt_sp2, sp2_lpt, lpt_con,
                          con_pu1, pu1_fwh1, fwh1_me, me_fwh2, fwh2_dsh,
                          dsh_me2, me2_eco, eco_eva, eva_sup, sup_cc)

        # cooling water
        cwi_con = Connection(cwi, 'out1', con, 'in2')
        con_cwo = Connection(con, 'out2', cwo, 'in1')

        self.nw.add_conns(cwi_con, con_cwo)

        # preheating
        sp1_dsh = Connection(sp1, 'out2', dsh, 'in1')
        dsh_fwh2 = Connection(dsh, 'out1', fwh2, 'in1')
        fwh2_pu2 = Connection(fwh2, 'out1', pu2, 'in1')
        pu2_me2 = Connection(pu2, 'out1', me2, 'in2')

        sp2_fwh1 = Connection(sp2, 'out2', fwh1, 'in1')
        fwh1_pu3 = Connection(fwh1, 'out1', pu3, 'in1')
        pu3_me = Connection(pu3, 'out1', me, 'in2')

        self.nw.add_conns(sp1_dsh, dsh_fwh2, fwh2_pu2, pu2_me2, sp2_fwh1,
                          fwh1_pu3, pu3_me)

        # busses
        # power bus
        self.power = Bus('power')
        self.power.add_comps({
            'comp': hpt,
            'char': -1
        }, {
            'comp': mpt,
            'char': -1
        }, {
            'comp': lpt,
            'char': -1
        }, {
            'comp': pu1,
            'char': -1
        }, {
            'comp': pu2,
            'char': -1
        }, {
            'comp': pu3,
            'char': -1
        })

        # heating bus
        self.heat = Bus('heat')
        self.heat.add_comps({
            'comp': eco,
            'char': 1
        }, {
            'comp': eva,
            'char': 1
        }, {
            'comp': sup,
            'char': 1
        })

        self.nw.add_busses(self.power, self.heat)

        # parametrization
        # components
        hpt.set_attr(eta_s=0.9)
        mpt.set_attr(eta_s=0.9)
        lpt.set_attr(eta_s=0.9)

        pu1.set_attr(eta_s=0.8)
        pu2.set_attr(eta_s=0.8)
        pu3.set_attr(eta_s=0.8)

        eco.set_attr(pr=0.99)
        eva.set_attr(pr=0.99)
        sup.set_attr(pr=0.99)

        con.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        fwh1.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        fwh2.set_attr(pr1=1, pr2=0.99, ttd_u=5)
        dsh.set_attr(pr1=0.99, pr2=0.99)

        # connections
        eco_eva.set_attr(x=0)
        eva_sup.set_attr(x=1)

        cc_hpt.set_attr(m=200, T=650, p=100, fluid={'water': 1})
        hpt_sp1.set_attr(p=20)
        mpt_sp2.set_attr(p=3)
        lpt_con.set_attr(p=0.05)

        cwi_con.set_attr(T=20, p=10, fluid={'water': 1})

        # test run
        self.nw.solve('design')
        document_model(self.nw)
Exemplo n.º 20
0
# %% busses

# motor efficiency
x = np.array([
    0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,
    0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 10
])
y = np.array([
    0.01, 0.3148, 0.5346, 0.6843, 0.7835, 0.8477, 0.8885, 0.9145, 0.9318,
    0.9443, 0.9546, 0.9638, 0.9724, 0.9806, 0.9878, 0.9938, 0.9982, 1.0009,
    1.002, 1.0015, 1, 0.9977, 0.9947, 0.9909, 0.9853, 0.9644
]) * 0.975

mot = CharLine(x=x, y=y)

power = Bus('power')
power.add_comps({
    'comp': cp,
    'char': mot,
    'base': 'bus'
}, {
    'comp': pump_ev,
    'char': mot,
    'base': 'bus'
})
heat = Bus('heat system')
heat.add_comps({'comp': cd, 'char': -1})
heat_storage = Bus('heat storage')
heat_storage.add_comps({'comp': ev, 'char': -1}, {'comp': su, 'char': -1})

ti = Bus('ti')
Exemplo n.º 21
0
    def setup(self):
        # %% network setup
        self.nw = Network(fluids=['water', 'NH3'],
                          T_unit='C',
                          p_unit='bar',
                          h_unit='kJ / kg',
                          m_unit='kg / s')

        # %% components
        # sources & sinks
        cc_coolant = CycleCloser('coolant cycle closer')
        cc_consumer = CycleCloser('consumer cycle closer')
        amb_in = Source('source ambient')
        amb_out = Sink('sink ambient')
        ic_in = Source('source intercool')
        ic_out = Sink('sink intercool')

        # consumer system
        cd = HeatExchanger('condenser')
        rp = Pump('recirculation pump')
        cons = HeatExchangerSimple('consumer')

        # evaporator system
        va = Valve('valve')
        dr = Drum('drum')
        ev = HeatExchanger('evaporator')
        su = HeatExchanger('superheater')
        pu = Pump('pump evaporator')

        # compressor-system
        cp1 = Compressor('compressor 1')
        cp2 = Compressor('compressor 2')
        he = HeatExchanger('intercooler')

        # busses
        self.power = Bus('total compressor power')
        self.power.add_comps({
            'comp': cp1,
            'base': 'bus'
        }, {
            'comp': cp2,
            'base': 'bus'
        })
        self.heat = Bus('total delivered heat')
        self.heat.add_comps({'comp': cd, 'char': -1})
        self.nw.add_busses(self.power, self.heat)

        # %% connections
        # consumer system
        c_in_cd = Connection(cc_coolant, 'out1', cd, 'in1')

        cb_rp = Connection(cc_consumer, 'out1', rp, 'in1')
        rp_cd = Connection(rp, 'out1', cd, 'in2')
        self.cd_cons = Connection(cd, 'out2', cons, 'in1')
        cons_cf = Connection(cons, 'out1', cc_consumer, 'in1')

        self.nw.add_conns(c_in_cd, cb_rp, rp_cd, self.cd_cons, cons_cf)

        # connection condenser - evaporator system
        cd_va = Connection(cd, 'out1', va, 'in1')

        self.nw.add_conns(cd_va)

        # evaporator system
        va_dr = Connection(va, 'out1', dr, 'in1')
        dr_pu = Connection(dr, 'out1', pu, 'in1')
        pu_ev = Connection(pu, 'out1', ev, 'in2')
        ev_dr = Connection(ev, 'out2', dr, 'in2')
        dr_su = Connection(dr, 'out2', su, 'in2')

        self.nw.add_conns(va_dr, dr_pu, pu_ev, ev_dr, dr_su)

        self.amb_in_su = Connection(amb_in, 'out1', su, 'in1')
        su_ev = Connection(su, 'out1', ev, 'in1')
        ev_amb_out = Connection(ev, 'out1', amb_out, 'in1')

        self.nw.add_conns(self.amb_in_su, su_ev, ev_amb_out)

        # connection evaporator system - compressor system
        su_cp1 = Connection(su, 'out2', cp1, 'in1')

        self.nw.add_conns(su_cp1)

        # compressor-system
        cp1_he = Connection(cp1, 'out1', he, 'in1')
        he_cp2 = Connection(he, 'out1', cp2, 'in1')
        cp2_c_out = Connection(cp2, 'out1', cc_coolant, 'in1')

        ic_in_he = Connection(ic_in, 'out1', he, 'in2')
        he_ic_out = Connection(he, 'out2', ic_out, 'in1')

        self.nw.add_conns(cp1_he, he_cp2, ic_in_he, he_ic_out, cp2_c_out)

        # %% component parametrization
        # condenser system
        x = np.array([
            0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625,
            0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175,
            1.2125, 1.2375, 1.25
        ])
        y = np.array([
            0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056,
            0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000,
            0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614
        ])
        rp.set_attr(eta_s=0.8,
                    design=['eta_s'],
                    offdesign=['eta_s_char'],
                    eta_s_char={
                        'char_func': CharLine(x, y),
                        'param': 'm'
                    })
        cons.set_attr(pr=1, design=['pr'], offdesign=['zeta'])

        # evaporator system
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.array([
            0.0100, 0.0400, 0.0700, 0.1100, 0.1500, 0.2000, 0.2500, 0.3000,
            0.3500, 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500, 0.7000,
            0.7500, 0.8000, 0.8500, 0.9000, 0.9500, 1.0000, 1.5000, 2.0000
        ])

        y = np.array([
            0.0185, 0.0751, 0.1336, 0.2147, 0.2997, 0.4118, 0.5310, 0.6582,
            0.7942, 0.9400, 0.9883, 0.9913, 0.9936, 0.9953, 0.9966, 0.9975,
            0.9983, 0.9988, 0.9992, 0.9996, 0.9998, 1.0000, 1.0008, 1.0014
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}
        ev.set_attr(pr1=1,
                    pr2=.999,
                    ttd_l=5,
                    design=['ttd_l'],
                    offdesign=['kA_char'],
                    kA_char1=kA_char1,
                    kA_char2=kA_char2)

        # no kA modification for hot side!
        x = np.array([0, 1])
        y = np.array([1, 1])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        # characteristic line for superheater kA
        x = np.array(
            [0, 0.045, 0.136, 0.244, 0.43, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2])
        y = np.array(
            [0, 0.037, 0.112, 0.207, 0.5, 0.8, 0.85, 0.9, 0.95, 1, 1.04, 1.07])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}
        su.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    offdesign=['zeta1', 'zeta2', 'kA_char'])

        x = np.array([
            0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625,
            0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175,
            1.2125, 1.2375, 1.25
        ])
        y = np.array([
            0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056,
            0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000,
            0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614
        ])
        pu.set_attr(eta_s=0.8,
                    design=['eta_s'],
                    offdesign=['eta_s_char'],
                    eta_s_char={
                        'char_func': CharLine(x, y),
                        'param': 'm'
                    })

        # compressor system
        x = np.array([0, 0.4, 1, 1.2])
        y = np.array([0.5, 0.9, 1, 1.1])

        cp1.set_attr(eta_s=0.8,
                     design=['eta_s'],
                     offdesign=['eta_s_char'],
                     eta_s_char={
                         'char_func': CharLine(x, y),
                         'param': 'm'
                     })
        cp2.set_attr(eta_s=0.8,
                     design=['eta_s'],
                     offdesign=['eta_s_char'],
                     eta_s_char={
                         'char_func': CharLine(x, y),
                         'param': 'm'
                     })

        # characteristic line for intercooler kA
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045,
            0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806,
            1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621,
            1.7058, 1.7488
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}

        he.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    offdesign=['zeta1', 'zeta2', 'kA_char'])

        # characteristic line for condenser kA
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045,
            0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806,
            1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621,
            1.7058, 1.7488
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}

        cd.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    pr2=0.9998,
                    design=['pr2'],
                    offdesign=['zeta2', 'kA_char'])

        # %% connection parametrization
        # condenser system
        c_in_cd.set_attr(fluid={'water': 0, 'NH3': 1}, p=60)
        rp_cd.set_attr(T=60, fluid={'water': 1, 'NH3': 0}, p=10)
        self.cd_cons.set_attr(T=105)
        cd_va.set_attr(p=Ref(c_in_cd, 1, -0.01), Td_bp=-5, design=['Td_bp'])

        # evaporator system cold side
        pu_ev.set_attr(m=Ref(va_dr, 10, 0), p0=5)
        dr_su.set_attr(p0=5, T=5)
        su_cp1.set_attr(p=Ref(dr_su, 1, -0.05), Td_bp=5, design=['Td_bp', 'p'])

        # evaporator system hot side
        self.amb_in_su.set_attr(m=20, T=12, p=1, fluid={'water': 1, 'NH3': 0})
        su_ev.set_attr(p=Ref(self.amb_in_su, 1, -0.001), design=['p'])
        ev_amb_out.set_attr()

        # compressor-system
        cp1_he.set_attr(p=15)
        he_cp2.set_attr(T=40, p=Ref(cp1_he, 1, -0.01), design=['T', 'p'])
        ic_in_he.set_attr(p=1, T=20, m=5, fluid={'water': 1, 'NH3': 0})
        he_ic_out.set_attr(p=Ref(ic_in_he, 1, -0.002), design=['p'])
Exemplo n.º 22
0
class TestHeatPump:
    def setup(self):
        # %% network setup
        self.nw = Network(fluids=['water', 'NH3'],
                          T_unit='C',
                          p_unit='bar',
                          h_unit='kJ / kg',
                          m_unit='kg / s')

        # %% components
        # sources & sinks
        cc_coolant = CycleCloser('coolant cycle closer')
        cc_consumer = CycleCloser('consumer cycle closer')
        amb_in = Source('source ambient')
        amb_out = Sink('sink ambient')
        ic_in = Source('source intercool')
        ic_out = Sink('sink intercool')

        # consumer system
        cd = HeatExchanger('condenser')
        rp = Pump('recirculation pump')
        cons = HeatExchangerSimple('consumer')

        # evaporator system
        va = Valve('valve')
        dr = Drum('drum')
        ev = HeatExchanger('evaporator')
        su = HeatExchanger('superheater')
        pu = Pump('pump evaporator')

        # compressor-system
        cp1 = Compressor('compressor 1')
        cp2 = Compressor('compressor 2')
        he = HeatExchanger('intercooler')

        # busses
        self.power = Bus('total compressor power')
        self.power.add_comps({
            'comp': cp1,
            'base': 'bus'
        }, {
            'comp': cp2,
            'base': 'bus'
        })
        self.heat = Bus('total delivered heat')
        self.heat.add_comps({'comp': cd, 'char': -1})
        self.nw.add_busses(self.power, self.heat)

        # %% connections
        # consumer system
        c_in_cd = Connection(cc_coolant, 'out1', cd, 'in1')

        cb_rp = Connection(cc_consumer, 'out1', rp, 'in1')
        rp_cd = Connection(rp, 'out1', cd, 'in2')
        self.cd_cons = Connection(cd, 'out2', cons, 'in1')
        cons_cf = Connection(cons, 'out1', cc_consumer, 'in1')

        self.nw.add_conns(c_in_cd, cb_rp, rp_cd, self.cd_cons, cons_cf)

        # connection condenser - evaporator system
        cd_va = Connection(cd, 'out1', va, 'in1')

        self.nw.add_conns(cd_va)

        # evaporator system
        va_dr = Connection(va, 'out1', dr, 'in1')
        dr_pu = Connection(dr, 'out1', pu, 'in1')
        pu_ev = Connection(pu, 'out1', ev, 'in2')
        ev_dr = Connection(ev, 'out2', dr, 'in2')
        dr_su = Connection(dr, 'out2', su, 'in2')

        self.nw.add_conns(va_dr, dr_pu, pu_ev, ev_dr, dr_su)

        self.amb_in_su = Connection(amb_in, 'out1', su, 'in1')
        su_ev = Connection(su, 'out1', ev, 'in1')
        ev_amb_out = Connection(ev, 'out1', amb_out, 'in1')

        self.nw.add_conns(self.amb_in_su, su_ev, ev_amb_out)

        # connection evaporator system - compressor system
        su_cp1 = Connection(su, 'out2', cp1, 'in1')

        self.nw.add_conns(su_cp1)

        # compressor-system
        cp1_he = Connection(cp1, 'out1', he, 'in1')
        he_cp2 = Connection(he, 'out1', cp2, 'in1')
        cp2_c_out = Connection(cp2, 'out1', cc_coolant, 'in1')

        ic_in_he = Connection(ic_in, 'out1', he, 'in2')
        he_ic_out = Connection(he, 'out2', ic_out, 'in1')

        self.nw.add_conns(cp1_he, he_cp2, ic_in_he, he_ic_out, cp2_c_out)

        # %% component parametrization
        # condenser system
        x = np.array([
            0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625,
            0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175,
            1.2125, 1.2375, 1.25
        ])
        y = np.array([
            0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056,
            0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000,
            0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614
        ])
        rp.set_attr(eta_s=0.8,
                    design=['eta_s'],
                    offdesign=['eta_s_char'],
                    eta_s_char={
                        'char_func': CharLine(x, y),
                        'param': 'm'
                    })
        cons.set_attr(pr=1, design=['pr'], offdesign=['zeta'])

        # evaporator system
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.array([
            0.0100, 0.0400, 0.0700, 0.1100, 0.1500, 0.2000, 0.2500, 0.3000,
            0.3500, 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500, 0.7000,
            0.7500, 0.8000, 0.8500, 0.9000, 0.9500, 1.0000, 1.5000, 2.0000
        ])

        y = np.array([
            0.0185, 0.0751, 0.1336, 0.2147, 0.2997, 0.4118, 0.5310, 0.6582,
            0.7942, 0.9400, 0.9883, 0.9913, 0.9936, 0.9953, 0.9966, 0.9975,
            0.9983, 0.9988, 0.9992, 0.9996, 0.9998, 1.0000, 1.0008, 1.0014
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}
        ev.set_attr(pr1=1,
                    pr2=.999,
                    ttd_l=5,
                    design=['ttd_l'],
                    offdesign=['kA_char'],
                    kA_char1=kA_char1,
                    kA_char2=kA_char2)

        # no kA modification for hot side!
        x = np.array([0, 1])
        y = np.array([1, 1])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        # characteristic line for superheater kA
        x = np.array(
            [0, 0.045, 0.136, 0.244, 0.43, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2])
        y = np.array(
            [0, 0.037, 0.112, 0.207, 0.5, 0.8, 0.85, 0.9, 0.95, 1, 1.04, 1.07])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}
        su.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    offdesign=['zeta1', 'zeta2', 'kA_char'])

        x = np.array([
            0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625,
            0.6375, 0.7125, 0.7875, 0.9, 0.9875, 1, 1.0625, 1.125, 1.175,
            1.2125, 1.2375, 1.25
        ])
        y = np.array([
            0.0076, 0.1390, 0.2731, 0.4003, 0.5185, 0.6263, 0.7224, 0.8056,
            0.8754, 0.9312, 0.9729, 1.0006, 1.0203, 1.0158, 1.0051, 1.0000,
            0.9746, 0.9289, 0.8832, 0.8376, 0.7843, 0.7614
        ])
        pu.set_attr(eta_s=0.8,
                    design=['eta_s'],
                    offdesign=['eta_s_char'],
                    eta_s_char={
                        'char_func': CharLine(x, y),
                        'param': 'm'
                    })

        # compressor system
        x = np.array([0, 0.4, 1, 1.2])
        y = np.array([0.5, 0.9, 1, 1.1])

        cp1.set_attr(eta_s=0.8,
                     design=['eta_s'],
                     offdesign=['eta_s_char'],
                     eta_s_char={
                         'char_func': CharLine(x, y),
                         'param': 'm'
                     })
        cp2.set_attr(eta_s=0.8,
                     design=['eta_s'],
                     offdesign=['eta_s_char'],
                     eta_s_char={
                         'char_func': CharLine(x, y),
                         'param': 'm'
                     })

        # characteristic line for intercooler kA
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045,
            0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806,
            1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621,
            1.7058, 1.7488
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}

        he.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    offdesign=['zeta1', 'zeta2', 'kA_char'])

        # characteristic line for condenser kA
        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.0000, 0.2455, 0.3747, 0.4798, 0.5718, 0.6552, 0.7323, 0.8045,
            0.8727, 0.9378, 1.0000, 1.0599, 1.1176, 1.1736, 1.2278, 1.2806,
            1.3320, 1.3822, 1.4313, 1.4792, 1.5263, 1.5724, 1.6176, 1.6621,
            1.7058, 1.7488
        ])
        kA_char1 = {'char_func': CharLine(x, y), 'param': 'm'}

        x = np.linspace(0, 2.5, 26)
        y = np.array([
            0.000, 0.164, 0.283, 0.389, 0.488, 0.581, 0.670, 0.756, 0.840,
            0.921, 1.000, 1.078, 1.154, 1.228, 1.302, 1.374, 1.446, 1.516,
            1.585, 1.654, 1.722, 1.789, 1.855, 1.921, 1.986, 2.051
        ])
        kA_char2 = {'char_func': CharLine(x, y), 'param': 'm'}

        cd.set_attr(kA_char1=kA_char1,
                    kA_char2=kA_char2,
                    pr2=0.9998,
                    design=['pr2'],
                    offdesign=['zeta2', 'kA_char'])

        # %% connection parametrization
        # condenser system
        c_in_cd.set_attr(fluid={'water': 0, 'NH3': 1}, p=60)
        rp_cd.set_attr(T=60, fluid={'water': 1, 'NH3': 0}, p=10)
        self.cd_cons.set_attr(T=105)
        cd_va.set_attr(p=Ref(c_in_cd, 1, -0.01), Td_bp=-5, design=['Td_bp'])

        # evaporator system cold side
        pu_ev.set_attr(m=Ref(va_dr, 10, 0), p0=5)
        dr_su.set_attr(p0=5, T=5)
        su_cp1.set_attr(p=Ref(dr_su, 1, -0.05), Td_bp=5, design=['Td_bp', 'p'])

        # evaporator system hot side
        self.amb_in_su.set_attr(m=20, T=12, p=1, fluid={'water': 1, 'NH3': 0})
        su_ev.set_attr(p=Ref(self.amb_in_su, 1, -0.001), design=['p'])
        ev_amb_out.set_attr()

        # compressor-system
        cp1_he.set_attr(p=15)
        he_cp2.set_attr(T=40, p=Ref(cp1_he, 1, -0.01), design=['T', 'p'])
        ic_in_he.set_attr(p=1, T=20, m=5, fluid={'water': 1, 'NH3': 0})
        he_ic_out.set_attr(p=Ref(ic_in_he, 1, -0.002), design=['p'])

    def test_model(self):
        """
        Test the operating points of the heat pump against a different model.

        By now, not all characteristic functions of the original model are
        available in detail, thus perfect matching is not possible!
        """
        self.nw.solve('design')
        self.nw.save('tmp')
        self.nw.print_results()

        # input values from ebsilon
        T = [105, 100, 90, 80]
        m_source = np.array([[23, 22, 20, 18, 16], [27, 24, 20, 16, 12],
                             [31, 25, 20, 15, 10], [33, 26, 20, 15, 10]])
        COP = np.array([[2.436, 2.414, 2.368, 2.338, 2.287],
                        [2.591, 2.523, 2.448, 2.355, 2.216],
                        [2.777, 2.635, 2.557, 2.442, 2.243],
                        [2.866, 2.711, 2.629, 2.528, 2.351]])

        i = 0
        for T in T:
            j = 0
            self.cd_cons.set_attr(T=T)
            for m in m_source[i]:
                self.amb_in_su.set_attr(m=m)
                if j == 0:
                    self.nw.solve('offdesign',
                                  design_path='tmp',
                                  init_path='tmp')

                else:
                    self.nw.solve('offdesign', design_path='tmp')

                # relative deviation should not exceed 6.5 %
                # this should be much less, unfortunately not all ebsilon
                # characteristics are available, thus it is
                # difficult/impossible to match the models perfectly!
                d_rel_COP = abs(self.heat.P.val / self.power.P.val -
                                COP[i, j]) / COP[i, j]
                msg = ('The deviation in COP should be less than 0.065, is ' +
                       str(d_rel_COP) + ' at mass flow ' + str(m) +
                       ' and temperature ' + str(T) + '.')
                assert d_rel_COP < 0.065, msg
                j += 1
            i += 1
        shutil.rmtree('./tmp', ignore_errors=True)
Exemplo n.º 23
0
    def __init__(self, working_fluid):
        """Set up model."""
        self.working_fluid = working_fluid
        fluids = ['water', self.working_fluid, 'air']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # geo parameters

        self.geo_mass_flow = 200
        geo_steam_share = 0.1
        self.T_brine_in = 140

        # ambient parameters

        self.T_amb = 5
        self.p_amb = 0.6

        # main components

        geo_steam = Source('geosteam source')
        geo_brine = Source('geobrine source')
        geo_reinjection = Sink('re-injection')

        air_in = Source('air source')
        air_out = Sink('air sink')
        air_fan = Compressor('air fan')
        air_cond = Condenser('condenser')

        orc_cc = CycleCloser('orc cycle closer')

        evap_splitter = Splitter('splitter evaporation')
        evap_merge = Merge('merge evaporation')
        evap_steam = Condenser('geosteam evaporator')
        evap_brine = HeatExchanger('geobrine evaporator')
        dr = Drum('drum')
        geo_merge = Merge('merge brine')

        pre = HeatExchanger('preheater')
        feed_working_fluid_pump = Pump('feed pump')

        tur = Turbine('turbine')

        ihe = HeatExchanger('internal heat exchanger')

        # busses
        net_power = Bus('net power output')
        net_power.add_comps(
            {'comp': tur, 'char': 0.97},
            {'comp': feed_working_fluid_pump, 'char': 0.97, 'base': 'bus'},
            {'comp': air_fan, 'char': 0.97, 'base': 'bus'}
        )

        ORC_power_bus = Bus('cycle gross power output')
        ORC_power_bus.add_comps(
            {'comp': tur}, {'comp': feed_working_fluid_pump}
        )

        geothermal_bus = Bus('thermal input')
        geothermal_bus.add_comps(
            {'comp': pre, 'char': -1}, {'comp': evap_brine, 'char': -1},
            {'comp': evap_steam, 'char': -1}
        )

        self.nw.add_busses(net_power, ORC_power_bus, geothermal_bus)

        # turbine to condenser
        c1 = Connection(orc_cc, 'out1', tur, 'in1', label='1')
        c2 = Connection(tur, 'out1', ihe, 'in1', label='2')
        c3 = Connection(ihe, 'out1', air_cond, 'in1', label='3')
        self.nw.add_conns(c1, c2, c3)

        # condenser to steam generator
        c4 = Connection(air_cond, 'out1', feed_working_fluid_pump, 'in1', label='4')
        c5 = Connection(feed_working_fluid_pump, 'out1', ihe, 'in2', label='5')
        self.nw.add_conns(c4, c5)

        # steam generator
        c6 = Connection(ihe, 'out2', pre, 'in2', label='6')
        c7 = Connection(pre, 'out2', dr, 'in1', label='7')
        c8 = Connection(dr, 'out1', evap_splitter, 'in1', label='8')
        c9 = Connection(evap_splitter, 'out2', evap_steam, 'in2', label='9')
        c10 = Connection(evap_steam, 'out2', evap_merge, 'in2', label='10')
        c11 = Connection(evap_splitter, 'out1', evap_brine, 'in2', label='11')
        c12 = Connection(evap_brine, 'out2', evap_merge, 'in1', label='12')
        c13 = Connection(evap_merge, 'out1', dr, 'in2', label='13')
        c0 = Connection(dr, 'out2', orc_cc, 'in1', label='0')
        self.nw.add_conns(c6, c7, c8, c11, c9, c12, c10, c13, c0)

        # condenser cold side
        c20 = Connection(air_in, 'out1', air_fan, 'in1', label='20')
        c21 = Connection(air_fan, 'out1', air_cond, 'in2', label='21')
        c22 = Connection(air_cond, 'out2', air_out, 'in1', label='22')
        self.nw.add_conns(c20, c21, c22)

        # geo source
        c30 = Connection(geo_steam, 'out1', evap_steam, 'in1', label='30')
        c31 = Connection(evap_steam, 'out1',  geo_merge, 'in1', label='31')
        c32 = Connection(geo_brine, 'out1', geo_merge, 'in2', label='32')
        c33 = Connection(geo_merge, 'out1', evap_brine, 'in1', label='33')
        self.nw.add_conns(c30, c31, c32, c33)

        c34 = Connection(evap_brine, 'out1', pre, 'in1', label='34')
        c35 = Connection(pre, 'out1', geo_reinjection, 'in1', label='35')
        self.nw.add_conns(c34, c35)

        # generate a set of stable starting values of every working fluid
        # fluid settings
        c6.set_attr(fluid={self.working_fluid: 1.0, 'air': 0.0, 'water': 0.0})
        c20.set_attr(fluid={self.working_fluid: 0.0, 'air': 1.0, 'water': 0.0})
        c30.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0})
        c32.set_attr(fluid={self.working_fluid: 0.0, 'air': 0.0, 'water': 1.0})

        # connection parameters
        p0 = PSI('P', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid)
        c1.set_attr(p0=p0 / 1e5)
        ws_stable_h0 = (
            PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid) +
            0.5 * (
                PSI('H', 'T', self.T_brine_in + 273.15, 'Q', 1, self.working_fluid) -
                PSI('H', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid)
            )
        ) / 1e3
        c2.set_attr(h=ws_stable_h0)
        p0 = PSI('P', 'T', self.T_amb + 273.15, 'Q', 1, self.working_fluid)
        c3.set_attr(Td_bp=5, design=['Td_bp'], p0=p0 / 1e5)
        c5.set_attr(h=Ref(c4, 1, 1))

        # steam generator
        c30.set_attr(
            m=self.geo_mass_flow * geo_steam_share,
            T=self.T_brine_in, x=1, p0=5)
        c32.set_attr(
            m=self.geo_mass_flow * (1 - geo_steam_share),
            T=self.T_brine_in, x=0)

        c13.set_attr()
        c12.set_attr(x=0.5)
        c10.set_attr(x=0.5, design=['x'])
        c34.set_attr(h=Ref(c33, 1, -50))

        c7.set_attr(Td_bp=-2)

        # main condenser
        c20.set_attr(p=self.p_amb, T=self.T_amb)
        c22.set_attr(T=self.T_amb + 15, p=self.p_amb)

        # component parameters
        # condensing
        ihe.set_attr(pr1=0.98, pr2=0.98)
        air_cond.set_attr(pr1=1, pr2=0.995, ttd_u=10)
        air_fan.set_attr(eta_s=0.6)

        # steam generator
        evap_brine.set_attr(pr1=0.98, ttd_l=8)
        pre.set_attr(pr1=0.98, pr2=0.98)

        self.nw.set_attr(iterinfo=False)
        self.nw.solve('design')
        self.nw.save('stable_' + self.working_fluid)

        # specify actual parameters
        tur.set_attr(eta_s=0.9)
        feed_working_fluid_pump.set_attr(eta_s=0.75)
        c2.set_attr(h=None)
        c5.set_attr(h=None)
        c34.set_attr(h=None, T=Ref(c33, 1, -10))

        self.nw.solve('design')
        c22.set_attr(T=None)
        c3.set_attr(Td_bp=None)

        self.ude_IHE_size = UserDefinedEquation(
            label='ihe deshuperheat ratio',
            func=desuperheat, deriv=desuperheat_deriv,
            latex={
                'equation':
                    r'0 = h_3 - h_2 - x_\mathrm{IHE} \cdot \left(h_3 -'
                    r'h\left(p_2, T_5 + \Delta T_\mathrm{t,u,min} \right)'
                    r'\right)'},
            conns=[
                self.nw.get_conn('2'),
                self.nw.get_conn('3'),
                self.nw.get_conn('5')],
            params={'distance': 0.0, 'ttd_min': 2}
        )
        if self.nw.lin_dep or self.nw.res[-1] > 1e-3:
            msg = 'No stable solution found.'
            raise TESPyNetworkError(msg)
        print(
            'Generated stable starting values for working fluid ' +
            self.working_fluid + '.')
Exemplo n.º 24
0
    def test_HeatExhangerSimple(self):
        """Test component properties of simple heat exchanger."""
        instance = HeatExchangerSimple('heat exchanger')
        self.setup_HeatExchangerSimple_network(instance)
        fl = {'Ar': 0, 'H2O': 1, 'S800': 0}
        self.c1.set_attr(fluid=fl, m=1, p=10, T=100)
        # trigger heat exchanger parameter groups
        instance.set_attr(hydro_group='HW', L=100, ks=100, pr=0.99, Tamb=20)

        # test grouped parameter settings with missing parameters
        instance.hydro_group.is_set = True
        instance.kA_group.is_set = True
        instance.kA_char_group.is_set = True
        self.nw.solve('design', init_only=True)
        msg = ('Hydro group must no be set, if one parameter is missing!')
        assert instance.hydro_group.is_set is False, msg
        msg = ('kA group must no be set, if one parameter is missing!')
        assert instance.kA_group.is_set is False, msg
        msg = ('kA char group must no be set, if one parameter is missing!')
        assert instance.kA_char_group.is_set is False, msg

        # test diameter calculation from specified dimensions (as pipe)
        # with Hazen-Williams method
        instance.set_attr(hydro_group='HW', D='var', L=100,
                          ks=100, pr=0.99, Tamb=20)
        b = Bus('heat', P=-1e5)
        b.add_comps({'comp': instance})
        self.nw.add_busses(b)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        pr = round(self.c2.p.val_SI / self.c1.p.val_SI, 3)
        msg = ('Value of pressure ratio must be ' + str(pr) + ', is ' +
               str(instance.pr.val) + '.')
        assert pr == round(instance.pr.val, 3), msg

        # make zeta system variable and use previously calculated diameter
        # to calculate zeta. The value for zeta must not change
        zeta = round(instance.zeta.val, 0)
        instance.set_attr(D=instance.D.val, zeta='var', pr=np.nan)
        instance.D.is_var = False
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of zeta must be ' + str(zeta) + ', is ' +
               str(round(instance.zeta.val, 0)) + '.')
        assert zeta == round(instance.zeta.val, 0), msg

        # same test with pressure ratio as sytem variable
        pr = round(instance.pr.val, 3)
        instance.set_attr(zeta=np.nan, pr='var')
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of pressure ratio must be ' + str(pr) +
               ', is ' + str(round(instance.pr.val, 3)) + '.')
        assert pr == round(instance.pr.val, 3), msg

        # test heat transfer coefficient as variable of the system (ambient
        # temperature required)
        instance.set_attr(kA='var', pr=np.nan)
        b.set_attr(P=-5e4)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

        # due to heat output being half of reference (for Tamb) kA should be
        # somewhere near to that (actual value is 677)
        msg = ('Value of heat transfer coefficient must be 677, is ' +
               str(instance.kA.val) + '.')
        assert 677 == round(instance.kA.val, 0), msg

        # test heat transfer as variable of the system
        instance.set_attr(Q='var', kA=np.nan)
        Q = -5e4
        b.set_attr(P=Q)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat transfer must be ' + str(Q) +
               ', is ' + str(instance.Q.val) + '.')
        assert Q == round(instance.Q.val, 0), msg
Exemplo n.º 25
0
class TestCompressedAirOut:
    def setup(self):
        """Set up air compressed air turbine."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['Air']

        # turbine part
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # components
        cas = Source('compressed air storage')
        reheater = HeatExchangerSimple('reheating')
        turb = Turbine('turbine')
        amb = Sink('air outlet')

        # power ouput bus
        self.power_out = Bus('power output')
        self.power_out.add_comps({'comp': turb, 'char': 1})
        # compressed air bus
        self.cas_out = Bus('exergy in')
        self.cas_out.add_comps({
            'comp': cas,
            'base': 'bus'
        }, {
            'comp': reheater,
            'base': 'bus'
        })
        # exergy loss bus
        self.ex_loss = Bus('exergy loss')
        self.ex_loss.add_comps({'comp': amb, 'base': 'component'})
        self.nw.add_busses(self.power_out, self.cas_out)

        # create connections
        cas_reheater = Connection(cas, 'out1', reheater, 'in1')
        reheater_turb = Connection(reheater, 'out1', turb, 'in1')
        turb_amb = Connection(turb, 'out1', amb, 'in1', label='outlet')
        self.nw.add_conns(cas_reheater, reheater_turb, turb_amb)

        # component parameters
        turb.set_attr(eta_s=1)
        reheater.set_attr(pr=1)

        # connection parameters
        cas_reheater.set_attr(m=2, T=self.Tamb, p=10, fluid={'Air': 1})
        reheater_turb.set_attr()
        turb_amb.set_attr(p=self.pamb, T=self.Tamb)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis at product exergy with T < Tamb."""
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power_out],
                             E_F=[self.cas_out],
                             E_L=[self.ex_loss])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + '.')
        assert abs(exergy_balance) <= err**0.5, msg

        msg = ('Exergy efficiency must be equal to 1.0 for this test but is ' +
               str(round(ean.network_data.epsilon, 4)) + '.')
        assert round(ean.network_data.epsilon, 4) == 1, msg

        c = self.nw.get_conn('outlet')
        c.set_attr(T=self.Tamb - 20)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        msg = (
            'Exergy destruction must be equal to 0.0 for this test but is ' +
            str(round(ean.network_data.E_D, 4)) + '.')
        assert round(ean.network_data.E_D, 4) == 0, msg

        msg = ('Exergy loss must be equal to ' + str(round(c.Ex_physical, 4)) +
               ' for this test but is ' + str(round(ean.network_data.E_L, 4)) +
               '.')
        assert round(ean.network_data.E_L, 4) == round(c.Ex_physical, 4), msg
Exemplo n.º 26
0
class TestClausiusRankine:
    def setup(self):
        """Set up clausis rankine cycle with turbine driven feed water pump."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['water']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # create components
        splitter1 = Splitter('splitter 1')
        merge1 = Merge('merge 1')
        turb = Turbine('turbine')
        fwp_turb = Turbine('feed water pump turbine')
        condenser = HeatExchangerSimple('condenser')
        fwp = Pump('pump')
        steam_generator = HeatExchangerSimple('steam generator')
        cycle_close = CycleCloser('cycle closer')

        # create busses
        # power output bus
        self.power = Bus('power_output')
        self.power.add_comps({'comp': turb, 'char': 1})
        # turbine driven feed water pump internal bus
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps({
            'comp': fwp_turb,
            'char': 1
        }, {
            'comp': fwp,
            'char': 1,
            'base': 'bus'
        })
        # heat input bus
        self.heat = Bus('heat_input')
        self.heat.add_comps({'comp': steam_generator, 'base': 'bus'})
        self.nw.add_busses(self.power, self.fwp_power, self.heat)

        # create connections
        fs_in = Connection(cycle_close, 'out1', splitter1, 'in1', label='fs')
        fs_fwpt = Connection(splitter1, 'out1', fwp_turb, 'in1')
        fs_t = Connection(splitter1, 'out2', turb, 'in1')
        fwpt_ws = Connection(fwp_turb, 'out1', merge1, 'in1')
        t_ws = Connection(turb, 'out1', merge1, 'in2')
        ws = Connection(merge1, 'out1', condenser, 'in1')
        cond = Connection(condenser, 'out1', fwp, 'in1', label='cond')
        fw = Connection(fwp, 'out1', steam_generator, 'in1', label='fw')
        fs_out = Connection(steam_generator, 'out1', cycle_close, 'in1')
        self.nw.add_conns(fs_in, fs_fwpt, fs_t, fwpt_ws, t_ws, ws, cond, fw,
                          fs_out)

        # component parameters
        turb.set_attr(eta_s=1)
        fwp_turb.set_attr(eta_s=1)
        condenser.set_attr(pr=1)
        fwp.set_attr(eta_s=1)
        steam_generator.set_attr(pr=1)

        # connection parameters
        fs_in.set_attr(m=10, p=120, T=600, fluid={'water': 1})
        cond.set_attr(T=self.Tamb, x=0)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_perfect_cycle(self):
        """Test exergy analysis in the perfect clausius rankine cycle."""
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)
        msg = ('Exergy destruction of this network must be 0 (smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(ean.network_data.E_D), 4)) + ' .')
        assert abs(ean.network_data.E_D) <= err**0.5, msg

        msg = ('Exergy efficiency of this network must be 1 for this test but '
               'is ' + str(round(ean.network_data.epsilon, 4)) + ' .')
        assert round(ean.network_data.epsilon, 4) == 1, msg

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg

        msg = (
            'Fuel exergy and product exergy must be identical for this test. '
            'Fuel exergy value: ' + str(round(ean.network_data.E_F, 4)) +
            '. Product exergy value: ' + str(round(ean.network_data.E_P, 4)) +
            '.')
        delta = round(abs(ean.network_data.E_F - ean.network_data.E_P), 4)
        assert delta < err**0.5, msg

    def test_exergy_analysis_plotting_data(self):
        """Test exergy analysis plotting."""
        self.nw.get_comp('steam generator').set_attr(pr=0.9)
        self.nw.get_comp('turbine').set_attr(eta_s=0.9)
        self.nw.get_comp('feed water pump turbine').set_attr(eta_s=0.85)
        self.nw.get_comp('pump').set_attr(eta_s=0.75)
        self.nw.get_conn('cond').set_attr(T=self.Tamb + 3)

        # specify efficiency values for the internal bus and power bus
        self.nw.del_busses(self.fwp_power, self.power)

        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.power = Bus('power_output')
        self.power.add_comps({
            'comp': self.nw.get_comp('turbine'),
            'char': 0.98
        })

        self.nw.add_busses(self.fwp_power, self.power)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg

        nodes = [
            'E_F', 'steam generator', 'splitter 1', 'feed water pump turbine',
            'turbine', 'merge 1', 'condenser', 'pump', 'E_D', 'E_P'
        ]

        links, nodes = ean.generate_plotly_sankey_input(node_order=nodes)
        # checksum for targets and source
        checksum = sum(links['target'] + links['source'])
        msg = ('The checksum of all target and source values in the link lists'
               'must be 148, but is ' + str(checksum) + '.')
        assert 148 == checksum, msg

    def test_exergy_analysis_violated_balance(self):
        """Test exergy analysis with violated balance."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # miss out on internal bus in exergy_analysis
        ean = ExergyAnalysis(self.nw, E_P=[self.power], E_F=[self.heat])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be violated for this test (larger than ' +
               str(err**0.5) + ') but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) > err**0.5, msg

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis bus conversion factors."""
        # specify efficiency values for the internal bus
        self.nw.del_busses(self.fwp_power)
        self.fwp_power = Bus('feed water pump power', P=0)
        self.fwp_power.add_comps(
            {
                'comp': self.nw.get_comp('feed water pump turbine'),
                'char': 0.99
            }, {
                'comp': self.nw.get_comp('pump'),
                'char': 0.98,
                'base': 'bus'
            })
        self.nw.add_busses(self.fwp_power)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # no exergy losses in this case
        ean = ExergyAnalysis(self.nw,
                             E_P=[self.power],
                             E_F=[self.heat],
                             internal_busses=[self.fwp_power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        label = 'pump'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = ('Pump exergy efficiency must be 0.98 but is ' +
               str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.98, msg

        label = 'feed water pump turbine'
        eps = ean.bus_data.loc[label, 'epsilon']
        msg = (
            'Feed water pump turbine exergy efficiency must be 0.99 but is ' +
            str(round(eps, 4)) + ' .')
        assert round(eps, 4) == 0.99, msg

    def test_exergy_analysis_missing_E_F_E_P_information(self):
        """Test exergy analysis errors with missing information."""
        with raises(TESPyNetworkError):
            ExergyAnalysis(self.nw, E_P=[self.power], E_F=[])

        with raises(TESPyNetworkError):
            ExergyAnalysis(self.nw, E_P=[], E_F=[self.heat])

    def test_exergy_analysis_component_on_two_busses(self):
        """Test exergy analysis errors with components on more than one bus."""
        with raises(TESPyNetworkError):
            ean = ExergyAnalysis(self.nw,
                                 E_P=[self.power],
                                 E_F=[self.heat, self.power])
            ean.analyse(pamb=self.pamb, Tamb=self.Tamb)
Exemplo n.º 27
0
class TestRefrigerator:
    def setup(self):
        """Set up simple refrigerator."""
        self.Tamb = 20
        self.pamb = 1
        fluids = ['R134a']
        self.nw = Network(fluids=fluids)
        self.nw.set_attr(p_unit='bar', T_unit='C', h_unit='kJ / kg')

        # create components
        va = Valve('expansion valve')
        cp = Compressor('compressor')
        cond = HeatExchangerSimple('condenser')
        eva = HeatExchangerSimple('evaporator')
        cc = CycleCloser('cycle closer')

        # create busses
        # power output bus
        self.power = Bus('power input')
        self.power.add_comps({'comp': cp, 'char': 1, 'base': 'bus'})
        # cooling bus
        self.cool = Bus('heat from fridge')
        self.cool.add_comps({'comp': eva})
        # heat input bus
        self.heat = Bus('heat to ambient')
        self.heat.add_comps({'comp': cond})
        self.nw.add_busses(self.power, self.cool, self.heat)

        # create connections
        cc_cp = Connection(cc, 'out1', cp, 'in1', label='from eva')
        cp_cond = Connection(cp, 'out1', cond, 'in1', label='to cond')
        cond_va = Connection(cond, 'out1', va, 'in1', label='from cond')
        va_eva = Connection(va, 'out1', eva, 'in1', label='to eva')
        eva_cc = Connection(eva, 'out1', cc, 'in1')
        self.nw.add_conns(cc_cp, cp_cond, cond_va, va_eva, eva_cc)

        # component parameters
        cp.set_attr(eta_s=0.9)
        cond.set_attr(pr=0.97)
        eva.set_attr(pr=0.96)

        # connection parameters
        cc_cp.set_attr(m=1, x=1, T=-25, fluid={'R134a': 1})
        cond_va.set_attr(x=0, T=self.Tamb + 1)

        # solve network
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)

    def test_exergy_analysis_bus_conversion(self):
        """Test exergy analysis at product exergy with T < Tamb."""
        # no exergy losses in this case
        ean = ExergyAnalysis(self.nw, E_P=[self.cool], E_F=[self.power])
        ean.analyse(pamb=self.pamb, Tamb=self.Tamb)

        exergy_balance = (ean.network_data.E_F - ean.network_data.E_P -
                          ean.network_data.E_L - ean.network_data.E_D)
        msg = ('Exergy balance must be closed (residual value smaller than ' +
               str(err**0.5) + ') for this test but is ' +
               str(round(abs(exergy_balance), 4)) + ' .')
        assert abs(exergy_balance) <= err**0.5, msg
    def setup(self):
        """
        Full model validation of SEGS model in TESPy vs. EBSILON.

        Find original models at https://github.com/fwitte/SEGS_exergy.
        """
        # specification of ambient state
        self.pamb = 1.013
        self.Tamb = 25

        # setting up network
        self.nw = Network(fluids=['water', 'INCOMP::TVP1', 'air'])
        self.nw.set_attr(T_unit='C',
                         p_unit='bar',
                         h_unit='kJ / kg',
                         m_unit='kg / s',
                         s_unit="kJ / kgK")

        # components definition
        air_in = Source('Ambient air source', fkt_group='CW')
        air_out = Sink('Ambient air sink', fkt_group='CW')

        closer_pt = CycleCloser('Cycle closer pt', fkt_group='SF')
        pt = ParabolicTrough('Parabolic trough', fkt_group='SF')
        ptpump = Pump('HTF pump', fkt_group='SF')

        closer = CycleCloser('Cycle closer power cycle', fkt_group='SG')

        eco = HeatExchanger('Economizer', fkt_group='SG')
        eva = HeatExchanger('Evaporator', fkt_group='SG')
        sup = HeatExchanger('Superheater', fkt_group='SG')
        drum = Drum('Drum', fkt_group='SG')

        reh = HeatExchanger('Reheater', fkt_group='RH')

        hpt1 = Turbine('HP turbine 1', fkt_group='HPT')
        hpt2 = Turbine('HP turbine 2', fkt_group='HPT')
        lpt1 = Turbine('LP turbine 1', fkt_group='LPT')
        lpt2 = Turbine('LP turbine 2', fkt_group='LPT')
        lpt3 = Turbine('LP turbine 3', fkt_group='LPT')
        lpt4 = Turbine('LP turbine 4', fkt_group='LPT')
        lpt5 = Turbine('LP turbine 5', fkt_group='LPT')

        cond = Condenser('Condenser', fkt_group='CW')
        condpump = Pump('Condenser pump', fkt_group='CW')
        fwt = Merge('Feedwater tank', num_in=3, fkt_group='LPP')
        fwp = Pump('Feedwater pump', fkt_group='FWP')
        cwp = Pump('Cooling water pump', fkt_group='CW')
        closer_cw = CycleCloser('Cycle closer cw', fkt_group='CW')
        ct = HeatExchanger('Cooling tower', fkt_group='CW')
        fan = Compressor('Cooling tower fan', fkt_group='CW')

        sp1 = Splitter('Splitter 1', fkt_group='HPT')
        sp2 = Splitter('Splitter 2', fkt_group='HPT')
        sp3 = Splitter('Splitter 3', fkt_group='LPT')
        sp4 = Splitter('Splitter 4', fkt_group='LPT')
        sp5 = Splitter('Splitter 5', fkt_group='LPT')
        sp6 = Splitter('Splitter 6', fkt_group='LPT')
        sp7 = Splitter('Splitter 7', fkt_group='SF')

        m1 = Merge('Merge 1', fkt_group='CW')
        m2 = Merge('Merge 2', fkt_group='HPP')
        m3 = Merge('Merge 3', fkt_group='LPP')
        m4 = Merge('Merge 4', fkt_group='LPP')
        m5 = Merge('Merge 5', fkt_group='SF')

        v1 = Valve('Valve 1', fkt_group='HPP')
        v2 = Valve('Valve 2', fkt_group='HPP')
        v3 = Valve('Valve 3', fkt_group='LPP')
        v4 = Valve('Valve 4', fkt_group='LPP')
        v5 = Valve('Valve 5', fkt_group='LPP')

        hppre1 = Condenser('High pressure preheater 1', fkt_group='HPP')
        hppre2 = Condenser('High pressure preheater 2', fkt_group='HPP')
        hppre1_sub = HeatExchanger('High pressure preheater 1 subcooling',
                                   fkt_group='HPP')
        hppre2_sub = HeatExchanger('High pressure preheater 2 subcooling',
                                   fkt_group='HPP')

        lppre1 = Condenser('Low pressure preheater 1', fkt_group='LPP')
        lppre2 = Condenser('Low pressure preheater 2', fkt_group='LPP')
        lppre3 = Condenser('Low pressure preheater 3', fkt_group='LPP')
        lppre1_sub = HeatExchanger('Low pressure preheater 1 subcooling',
                                   fkt_group='LPP')
        lppre2_sub = HeatExchanger('Low pressure preheater 2 subcooling',
                                   fkt_group='LPP')
        lppre3_sub = HeatExchanger('Low pressure preheater 3 subcooling',
                                   fkt_group='LPP')

        # connections definition
        # power cycle
        c1 = Connection(sup, 'out2', closer, 'in1', label='1')
        c2 = Connection(closer, 'out1', hpt1, 'in1', label='2')
        c3 = Connection(hpt1, 'out1', sp1, 'in1', label='3')
        c4 = Connection(sp1, 'out1', hpt2, 'in1', label='4')
        c5 = Connection(hpt2, 'out1', sp2, 'in1', label='5')
        c6 = Connection(sp2, 'out1', reh, 'in2', label='6')
        c7 = Connection(reh, 'out2', lpt1, 'in1', label='7')
        c8 = Connection(lpt1, 'out1', sp3, 'in1', label='8')
        c9 = Connection(sp3, 'out1', lpt2, 'in1', label='9')
        c10 = Connection(lpt2, 'out1', sp4, 'in1', label='10')
        c11 = Connection(sp4, 'out1', lpt3, 'in1', label='11')
        c12 = Connection(lpt3, 'out1', sp5, 'in1', label='12')
        c13 = Connection(sp5, 'out1', lpt4, 'in1', label='13')
        c14 = Connection(lpt4, 'out1', sp6, 'in1', label='14')
        c15 = Connection(sp6, 'out1', lpt5, 'in1', label='15')
        c16 = Connection(lpt5, 'out1', m1, 'in1', label='16')
        c17 = Connection(m1, 'out1', cond, 'in1', label='17')
        c18 = Connection(cond, 'out1', condpump, 'in1', label='18')
        c19 = Connection(condpump, 'out1', lppre1, 'in2', label='19')
        # c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19')
        # c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20')
        c21 = Connection(lppre1, 'out2', lppre2, 'in2', label='21')
        # c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21')
        # c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22')
        c23 = Connection(lppre2, 'out2', lppre3, 'in2', label='23')
        # c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23')
        # c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24')
        c25 = Connection(lppre3, 'out2', fwt, 'in1', label='25')
        c26 = Connection(fwt, 'out1', fwp, 'in1', label='26')
        c27 = Connection(fwp, 'out1', hppre1, 'in2', label='27')
        c29 = Connection(hppre1, 'out2', hppre2, 'in2', label='29')
        c31 = Connection(hppre2, 'out2', eco, 'in2', label='31')

        c36 = Connection(sp1, 'out2', hppre2, 'in1', label='36')
        c37 = Connection(hppre2, 'out1', v1, 'in1', label='37')
        c39 = Connection(v1, 'out1', m2, 'in2', label='39')
        c40 = Connection(sp2, 'out2', m2, 'in1', label='40')
        c41 = Connection(m2, 'out1', hppre1, 'in1', label='41')
        c42 = Connection(hppre1, 'out1', v2, 'in1', label='42')
        c44 = Connection(v2, 'out1', fwt, 'in2', label='44')
        c45 = Connection(sp3, 'out2', fwt, 'in3', label='45')
        c46 = Connection(sp4, 'out2', lppre3, 'in1', label='46')
        c47 = Connection(lppre3, 'out1', v3, 'in1', label='47')
        # c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47')
        # c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48')
        c49 = Connection(v3, 'out1', m3, 'in1', label='49')
        c50 = Connection(sp5, 'out2', m3, 'in2', label='50')
        c51 = Connection(m3, 'out1', lppre2, 'in1', label='51')
        c52 = Connection(lppre2, 'out1', v4, 'in1', label='52')
        # c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52')
        # c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53')
        c54 = Connection(v4, 'out1', m4, 'in2', label='54')
        c55 = Connection(sp6, 'out2', m4, 'in1', label='55')
        c56 = Connection(m4, 'out1', lppre1, 'in1', label='56')
        c57 = Connection(lppre1, 'out1', v5, 'in1', label='57')
        # c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57')
        # c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58')
        c59 = Connection(v5, 'out1', m1, 'in2', label='59')

        # components from subsystem
        c32 = Connection(eco, 'out2', drum, 'in1', label='32')
        c33 = Connection(drum, 'out1', eva, 'in2', label='33')
        c34 = Connection(eva, 'out2', drum, 'in2', label='34')
        c35 = Connection(drum, 'out2', sup, 'in2', label='35')
        c73 = Connection(sup, 'out1', eva, 'in1', label='73')
        c74 = Connection(eva, 'out1', eco, 'in1', label='74')

        # cooling water
        c60 = Connection(cond, 'out2', closer_cw, 'in1', label='60')
        c61 = Connection(closer_cw, 'out1', ct, 'in1', label='61')
        c62 = Connection(ct, 'out1', cwp, 'in1', label='62')
        c63 = Connection(cwp, 'out1', cond, 'in2', label='63')

        # cooling tower
        c64 = Connection(air_in, 'out1', fan, 'in1', label='64')
        c65 = Connection(fan, 'out1', ct, 'in2', label='65')
        c66 = Connection(ct, 'out2', air_out, 'in1', label='66')

        # parabolic trough cycle
        c70 = Connection(pt, 'out1', closer_pt, 'in1', label='67')
        c71 = Connection(closer_pt, 'out1', sp7, 'in1', label='71')
        c72 = Connection(sp7, 'out1', sup, 'in1', label='72')
        c75 = Connection(eco, 'out1', m5, 'in1', label='75')
        c76 = Connection(sp7, 'out2', reh, 'in1', label='76')
        c77 = Connection(reh, 'out1', m5, 'in2', label='77')
        c78 = Connection(m5, 'out1', ptpump, 'in1', label='78')
        c79 = Connection(ptpump, 'out1', pt, 'in1', label='79')

        # add connections to network
        self.nw.add_conns(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12,
                          c13, c14, c15, c16, c17, c18, c19, c21, c23, c25,
                          c26, c27, c29, c31, c32, c33, c34, c35, c36, c37,
                          c39, c40, c41, c42, c44, c45, c46, c47, c49, c50,
                          c51, c52, c54, c55, c56, c57, c59, c60, c61, c62,
                          c63, c64, c65, c66, c70, c71, c72, c73, c74, c75,
                          c76, c77, c78, c79)

        # power bus
        power = Bus('total output power')
        power.add_comps({
            'comp': hpt1,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': hpt2,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt1,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt2,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt3,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt4,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': lpt5,
            'char': 0.97,
            'base': 'component'
        }, {
            'comp': fwp,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': condpump,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': ptpump,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': cwp,
            'char': 0.95,
            'base': 'bus'
        }, {
            'comp': fan,
            'char': 0.95,
            'base': 'bus'
        })

        heat_input_bus = Bus('heat input')
        heat_input_bus.add_comps({'comp': pt, 'base': 'bus'})

        exergy_loss_bus = Bus('exergy loss')
        exergy_loss_bus.add_comps({
            'comp': air_in,
            'base': 'bus'
        }, {'comp': air_out})

        self.nw.add_busses(power, heat_input_bus, exergy_loss_bus)

        # component parameters
        pt.set_attr(doc=0.95,
                    aoi=0,
                    Tamb=25,
                    A='var',
                    eta_opt=0.73,
                    c_1=0.00496,
                    c_2=0.000691,
                    E=1000,
                    iam_1=1,
                    iam_2=1)

        ptpump.set_attr(eta_s=0.6)

        eco.set_attr()
        eva.set_attr(ttd_l=5)
        sup.set_attr()

        hpt1.set_attr(eta_s=0.8376)
        hpt2.set_attr(eta_s=0.8463)
        lpt1.set_attr(eta_s=0.8623)
        lpt2.set_attr(eta_s=0.917)
        lpt3.set_attr(eta_s=0.9352)
        lpt4.set_attr(eta_s=0.88)
        lpt5.set_attr(eta_s=0.6445)

        cond.set_attr(pr1=1, pr2=0.9, ttd_u=5)
        condpump.set_attr(eta_s=0.7)
        fwp.set_attr(eta_s=0.7)
        cwp.set_attr(eta_s=0.7)
        ct.set_attr(pr1=0.95)
        fan.set_attr(eta_s=0.6)

        lppre1.set_attr(pr1=1, ttd_u=5)
        lppre2.set_attr(pr1=1, ttd_u=5)
        lppre3.set_attr(pr1=1, ttd_u=5)
        hppre1.set_attr(pr1=1, ttd_u=5)
        hppre2.set_attr(pr1=1, ttd_u=5)

        lppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        lppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        lppre3_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        hppre1_sub.set_attr(pr1=1, pr2=1, ttd_l=10)
        hppre2_sub.set_attr(pr1=1, pr2=1, ttd_l=10)

        # connection parameters
        # parabolic trough cycle
        c70.set_attr(fluid={'TVP1': 1, 'water': 0, 'air': 0}, T=390, p=23.304)
        c76.set_attr(m=Ref(c70, 0.1284, 0))
        c73.set_attr(p=22.753)
        c74.set_attr(p=21.167)
        c78.set_attr(p=20.34)
        c79.set_attr(p=41.024)

        # cooling water
        c62.set_attr(fluid={
            'TVP1': 0,
            'water': 1,
            'air': 0
        },
                     T=30,
                     p=self.pamb)
        # cooling tower
        c64.set_attr(fluid={
            'water': 0,
            'TVP1': 0,
            'air': 1
        },
                     p=self.pamb,
                     T=self.Tamb)
        c65.set_attr(p=self.pamb + 0.0005)
        c66.set_attr(p=self.pamb, T=30)
        # power cycle
        c32.set_attr(Td_bp=-2)
        c34.set_attr(x=0.5)
        c1.set_attr(fluid={'water': 1, 'TVP1': 0, 'air': 0}, p=100, T=371)

        # steam generator pressure values
        c31.set_attr(p=103.56)
        c35.set_attr(p=103.42)

        # turbine pressure values
        c3.set_attr(p=33.61, m=38.969)
        c5.set_attr(p=18.58)
        c7.set_attr(p=17.1, T=371)
        c8.set_attr(p=7.98)
        c10.set_attr(p=2.73)
        c12.set_attr(p=0.96)
        c14.set_attr(p=0.29)

        # preheater pressure values
        c19.set_attr(p=14.755, state='l')
        c21.set_attr(p=9.9975, state='l')
        c23.set_attr(p=8.7012, state='l')
        c25.set_attr(state='l')

        c27.set_attr(p=125)
        c29.set_attr(p=112)

        # condensation
        c16.set_attr(p=0.08)

        # feedwater tank
        c26.set_attr(x=0)

        # a stable solution is generated for parts of the network
        self.nw.solve(mode='design')

        self.nw.del_conns(c19, c21, c23, c27, c29, c37, c42, c47, c52, c57)

        c19 = Connection(condpump, 'out1', lppre1_sub, 'in2', label='19')
        c20 = Connection(lppre1_sub, 'out2', lppre1, 'in2', label='20')
        c21 = Connection(lppre1, 'out2', lppre2_sub, 'in2', label='21')
        c22 = Connection(lppre2_sub, 'out2', lppre2, 'in2', label='22')
        c23 = Connection(lppre2, 'out2', lppre3_sub, 'in2', label='23')
        c24 = Connection(lppre3_sub, 'out2', lppre3, 'in2', label='24')

        c27 = Connection(fwp, 'out1', hppre1_sub, 'in2', label='27')
        c28 = Connection(hppre1_sub, 'out2', hppre1, 'in2', label='28')
        c29 = Connection(hppre1, 'out2', hppre2_sub, 'in2', label='29')
        c30 = Connection(hppre2_sub, 'out2', hppre2, 'in2', label='30')

        c37 = Connection(hppre2, 'out1', hppre2_sub, 'in1', label='37')
        c38 = Connection(hppre2_sub, 'out1', v1, 'in1', label='38')
        c42 = Connection(hppre1, 'out1', hppre1_sub, 'in1', label='42')
        c43 = Connection(hppre1_sub, 'out1', v2, 'in1', label='43')

        c47 = Connection(lppre3, 'out1', lppre3_sub, 'in1', label='47')
        c48 = Connection(lppre3_sub, 'out1', v3, 'in1', label='48')
        c52 = Connection(lppre2, 'out1', lppre2_sub, 'in1', label='52')
        c53 = Connection(lppre2_sub, 'out1', v4, 'in1', label='53')
        c57 = Connection(lppre1, 'out1', lppre1_sub, 'in1', label='57')
        c58 = Connection(lppre1_sub, 'out1', v5, 'in1', label='58')

        self.nw.add_conns(c19, c20, c21, c22, c23, c24, c27, c28, c29, c30,
                          c37, c38, c42, c43, c47, c48, c52, c53, c57, c58)

        # specification of missing parameters
        c19.set_attr(p=14.755)
        c21.set_attr(p=9.9975, state='l')
        c23.set_attr(p=8.7012, state='l')
        c27.set_attr(p=125)
        c29.set_attr(p=112)

        # solve final state
        self.nw.solve(mode='design')
Exemplo n.º 29
0
# district heating
dh_c = Connection(dh_in, 'out1', cond, 'in2')
dh_i = Connection(cond, 'out2', dh_whr, 'in2')
dh_w = Connection(dh_whr, 'out2', dh_out, 'in1')

nw.add_conns(dh_c, dh_i, dh_w)

# characteristic function for generator efficiency
x = np.array([0, 0.2, 0.4, 0.6, 0.8, 1, 1.2])
y = np.array([0, 0.86, 0.9, 0.93, 0.95, 0.96, 0.95])

char = CharLine(x=x, y=y)

# %% busses
power = Bus('power output')
power.add_comps({
    'comp': g_turb,
    'char': char
}, {
    'comp': comp,
    'char': char,
    'base': 'bus'
}, {
    'comp': turb,
    'char': char
}, {
    'comp': pu,
    'char': char,
    'base': 'bus'
})
Exemplo n.º 30
0
    def test_WaterElectrolyzer(self):
        """Test component properties of water electrolyzer."""
        # check bus function:
        # power output on component and bus must be indentical
        self.nw.get_conn('h2o').set_attr(T=25, p=1)
        self.nw.get_conn('h2').set_attr(T=25)
        power = Bus('power')
        power.add_comps({'comp': self.instance, 'param': 'P', 'base': 'bus'})
        power.set_attr(P=2.5e6)
        self.nw.add_busses(power)

        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of power must be ' + str(power.P.val) + ', is ' +
               str(self.instance.P.val) + '.')
        assert round(power.P.val, 1) == round(self.instance.P.val), msg

        # effieciency was set to 100 % with inlet and outlet states of the
        # reaction educts and products beeing identical to reference state
        # therefore Q must be equal to 0
        msg = ('Value of heat output must be 0.0, is ' +
               str(self.instance.Q.val) + '.')
        assert round(self.instance.Q.val, 4) == 0.0, msg

        # reset power, change efficiency value and specify heat bus value
        power.set_attr(P=np.nan)
        self.nw.get_conn('h2o').set_attr(T=25, p=1)
        self.nw.get_conn('h2').set_attr(T=50)
        self.instance.set_attr(eta=0.8)
        # check bus function:
        # heat output on component and bus must be indentical
        heat = Bus('heat')
        heat.add_comps({'comp': self.instance, 'param': 'Q'})
        heat.set_attr(P=-8e5)
        self.nw.add_busses(heat)

        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat flow must be ' + str(heat.P.val) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(heat.P.val, 1) == round(self.instance.Q.val), msg
        self.nw.save('tmp')

        # check bus function:
        # heat output on component and bus must identical (offdesign test)
        Q = heat.P.val * 0.9
        heat.set_attr(P=Q)
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat flow must be ' + str(Q) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(Q, 1) == round(self.instance.Q.val), msg

        # delete both busses again
        self.nw.del_busses(heat, power)

        # test efficiency vs. specific energy consumption
        self.nw.get_conn('h2').set_attr(m=0.1)
        self.instance.set_attr(eta=0.9, e='var')
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of efficiency must be ' + str(self.instance.eta.val) +
               ', is ' + str(self.instance.e0 / self.instance.e.val) + '.')
        eta = round(self.instance.eta.val, 2)
        eta_calc = round(self.instance.e0 / self.instance.e.val, 2)
        assert eta == eta_calc, msg

        # test efficiency value > 1, Q must be larger than 0
        e = 130e6
        self.instance.set_attr(e=np.nan, eta=np.nan)
        self.instance.set_attr(e=e)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        # test efficiency
        msg = ('Value of efficiency must be ' + str(self.instance.e0 / e) +
               ', is ' + str(self.instance.eta.val) + '.')
        eta = round(self.instance.e0 / e, 2)
        eta_calc = round(self.instance.eta.val, 2)
        assert eta == eta_calc, msg
        # test Q
        msg = ('Value of heat must be larger than zero, is ' +
               str(self.instance.Q.val) + '.')
        assert self.instance.Q.val > 0, msg

        # test specific energy consumption
        e = 150e6
        self.instance.set_attr(e=np.nan, eta=np.nan)
        self.instance.set_attr(e=e)
        self.nw.solve('design')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of specific energy consumption e must be ' + str(e) +
               ', is ' + str(self.instance.e.val) + '.')
        assert round(e, 1) == round(self.instance.e.val, 1), msg

        # test cooling loop pressure ratio, zeta as variable value
        pr = 0.95
        self.instance.set_attr(pr=pr,
                               e=None,
                               eta=None,
                               zeta='var',
                               P=2e7,
                               design=['pr'])
        self.nw.solve('design')
        shutil.rmtree('./tmp', ignore_errors=True)
        self.nw.save('tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of pressure ratio must be ' + str(pr) + ', is ' +
               str(self.instance.pr.val) + '.')
        assert round(pr, 2) == round(self.instance.pr.val, 2), msg

        # use zeta as offdesign parameter, at design point pressure
        # ratio must not change
        self.instance.set_attr(zeta=np.nan, offdesign=['zeta'])
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of pressure ratio must be ' + str(pr) + ', is ' +
               str(self.instance.pr.val) + '.')
        assert round(pr, 2) == round(self.instance.pr.val, 2), msg

        # test heat output specification in offdesign mode
        Q = self.instance.Q.val * 0.9
        self.instance.set_attr(Q=Q, P=np.nan)
        self.nw.solve('offdesign', design_path='tmp')
        convergence_check(self.nw.lin_dep)
        msg = ('Value of heat must be ' + str(Q) + ', is ' +
               str(self.instance.Q.val) + '.')
        assert round(Q, 0) == round(self.instance.Q.val, 0), msg
        shutil.rmtree('./tmp', ignore_errors=True)