Exemplo n.º 1
0
    def setUpClass(cls):
        params = Configuration(common.TEST_CONF_ROIPAC).__dict__
        cls.temp_out_dir = tempfile.mkdtemp()
        sys.argv = ['prepifg.py', common.TEST_CONF_ROIPAC]
        params[cf.OUT_DIR] = cls.temp_out_dir
        conv2tif.main(params)
        prepifg.main(params)

        params[cf.REF_EST_METHOD] = 2

        xlks, ylks, crop = cf.transform_params(params)

        base_ifg_paths = cf.original_ifg_paths(params[cf.IFG_FILE_LIST],
                                               params[cf.OBS_DIR])

        dest_paths = cf.get_dest_paths(base_ifg_paths, crop, params, xlks)
        # start run_pyrate copy
        ifgs = common.pre_prepare_ifgs(dest_paths, params)
        mst_grid = common.mst_calculation(dest_paths, params)
        refx, refy = process._ref_pixel_calc(dest_paths, params)
        # Estimate and remove orbit errors
        pyrate.core.orbital.remove_orbital_error(ifgs, params)
        ifgs = common.prepare_ifgs_without_phase(dest_paths, params)
        for ifg in ifgs:
            ifg.close()
        _, ifgs = process._ref_phase_estimation(dest_paths, params, refx, refy)
        ifgs[0].open()
        r_dist = covariance.RDist(ifgs[0])()
        ifgs[0].close()
        maxvar = [covariance.cvd(i, params, r_dist)[0] for i in dest_paths]
        for ifg in ifgs:
            ifg.open()
        vcmt = covariance.get_vcmt(ifgs, maxvar)

        for ifg in ifgs:
            ifg.close()
            ifg.open()
            ifg.nodata_value = 0.0

        params[cf.TIME_SERIES_METHOD] = 1
        params[cf.PARALLEL] = 0
        # Calculate time series
        cls.tsincr_0, cls.tscum_0, _ = common.calculate_time_series(
            ifgs, params, vcmt, mst=mst_grid)

        params[cf.PARALLEL] = 1
        cls.tsincr_1, cls.tscum_1, cls.tsvel_1 = common.calculate_time_series(
            ifgs, params, vcmt, mst=mst_grid)

        # load the legacy data
        ts_dir = os.path.join(common.SML_TEST_DIR, 'time_series')
        tsincr_path = os.path.join(ts_dir, 'ts_incr_interp0_method1.csv')
        ts_incr = np.genfromtxt(tsincr_path)

        tscum_path = os.path.join(ts_dir, 'ts_cum_interp0_method1.csv')
        ts_cum = np.genfromtxt(tscum_path)
        cls.ts_incr = np.reshape(ts_incr,
                                 newshape=cls.tsincr_0.shape,
                                 order='F')
        cls.ts_cum = np.reshape(ts_cum, newshape=cls.tscum_0.shape, order='F')
Exemplo n.º 2
0
    def setUpClass(cls):
        params = cf.get_config_params(common.TEST_CONF_ROIPAC)
        cls.temp_out_dir = tempfile.mkdtemp()
        sys.argv = ['run_prepifg.py', common.TEST_CONF_ROIPAC]
        params[cf.OUT_DIR] = cls.temp_out_dir
        run_prepifg.main(params)

        params[cf.REF_EST_METHOD] = 2

        xlks, ylks, crop = cf.transform_params(params)

        base_ifg_paths = cf.original_ifg_paths(params[cf.IFG_FILE_LIST])

        dest_paths = cf.get_dest_paths(base_ifg_paths, crop, params, xlks)
        # start run_pyrate copy
        ifgs = common.pre_prepare_ifgs(dest_paths, params)
        mst_grid = common.mst_calculation(dest_paths, params)
        refx, refy = run_pyrate._ref_pixel_calc(dest_paths, params)
        # Estimate and remove orbit errors
        pyrate.orbital.remove_orbital_error(ifgs, params)
        ifgs = common.prepare_ifgs_without_phase(dest_paths, params)
        _, ifgs = rpe.estimate_ref_phase(ifgs, params, refx, refy)
        r_dist = covariance.RDist(ifgs[0])()
        maxvar = [covariance.cvd(i, params, r_dist)[0] for i in ifgs]
        vcmt = covariance.get_vcmt(ifgs, maxvar)

        params[cf.TIME_SERIES_METHOD] = 1
        params[cf.PARALLEL] = 0
        # Calculate time series
        cls.tsincr_0, cls.tscum_0, _ = common.calculate_time_series(
            ifgs, params, vcmt, mst=mst_grid)

        params[cf.PARALLEL] = 1
        cls.tsincr_1, cls.tscum_1, cls.tsvel_1 = \
            common.calculate_time_series(ifgs, params, vcmt, mst=mst_grid)

        params[cf.PARALLEL] = 2
        cls.tsincr_2, cls.tscum_2, cls.tsvel_2 = \
            common.calculate_time_series(ifgs, params, vcmt, mst=mst_grid)

        # load the matlab data
        ts_dir = os.path.join(common.SML_TEST_DIR, 'matlab_time_series')
        tsincr_path = os.path.join(ts_dir, 'ts_incr_interp0_method1.csv')
        ts_incr = np.genfromtxt(tsincr_path)

        # the matlab tsvel return is a bit pointless and not tested here
        # tserror is not returned
        # tserr_path = os.path.join(SML_TIME_SERIES_DIR,
        # 'ts_error_interp0_method1.csv')
        # ts_err = np.genfromtxt(tserr_path, delimiter=',')
        tscum_path = os.path.join(ts_dir, 'ts_cum_interp0_method1.csv')
        ts_cum = np.genfromtxt(tscum_path)
        cls.ts_incr = np.reshape(ts_incr,
                                 newshape=cls.tsincr_0.shape,
                                 order='F')
        cls.ts_cum = np.reshape(ts_cum, newshape=cls.tscum_0.shape, order='F')
Exemplo n.º 3
0
    def setUpClass(cls):
        params = Configuration(common.TEST_CONF_ROIPAC).__dict__
        cls.temp_out_dir = tempfile.mkdtemp()
        params[cf.OUT_DIR] = cls.temp_out_dir
        params[cf.PARALLEL] = 0
        conv2tif.main(params)
        prepifg.main(params)

        params[cf.REF_EST_METHOD] = 2

        base_ifg_paths = [
            c.unwrapped_path for c in params[cf.INTERFEROGRAM_FILES]
        ]
        headers = [roipac.roipac_header(i, params) for i in base_ifg_paths]
        dest_paths = [
            Path(cls.temp_out_dir).joinpath(Path(
                c.sampled_path).name).as_posix()
            for c in params[cf.INTERFEROGRAM_FILES][:-2]
        ]
        # start run_pyrate copy
        ifgs = common.pre_prepare_ifgs(dest_paths, params)
        mst_grid = common.mst_calculation(dest_paths, params)

        refx, refy = process._ref_pixel_calc(dest_paths, params)

        # Estimate and remove orbit errors
        pyrate.core.orbital.remove_orbital_error(ifgs, params, headers)
        ifgs = common.prepare_ifgs_without_phase(dest_paths, params)
        for ifg in ifgs:
            ifg.close()
        _, ifgs = process._ref_phase_estimation(dest_paths, params, refx, refy)
        ifgs[0].open()
        r_dist = covariance.RDist(ifgs[0])()
        ifgs[0].close()
        # Calculate interferogram noise
        maxvar = [covariance.cvd(i, params, r_dist)[0] for i in dest_paths]
        for ifg in ifgs:
            ifg.open()
        vcmt = covariance.get_vcmt(ifgs, maxvar)
        for ifg in ifgs:
            ifg.close()
            ifg.open()
            ifg.nodata_value = 0.0

        params[cf.TIME_SERIES_METHOD] = 2
        params[cf.PARALLEL] = 1
        # Calculate time series
        cls.tsincr, cls.tscum, _ = common.calculate_time_series(ifgs,
                                                                params,
                                                                vcmt,
                                                                mst=mst_grid)

        params[cf.PARALLEL] = 0
        # Calculate time series serailly by the pixel
        cls.tsincr_0, cls.tscum_0, _ = common.calculate_time_series(
            ifgs, params, vcmt, mst=mst_grid)

        # copy legacy data
        SML_TIME_SERIES_DIR = os.path.join(common.SML_TEST_DIR, 'time_series')
        tsincr_path = os.path.join(SML_TIME_SERIES_DIR,
                                   'ts_incr_interp0_method2.csv')
        ts_incr = np.genfromtxt(tsincr_path)

        tscum_path = os.path.join(SML_TIME_SERIES_DIR,
                                  'ts_cum_interp0_method2.csv')
        ts_cum = np.genfromtxt(tscum_path)

        cls.ts_incr = np.reshape(ts_incr,
                                 newshape=cls.tsincr_0.shape,
                                 order='F')
        cls.ts_cum = np.reshape(ts_cum, newshape=cls.tscum_0.shape, order='F')
Exemplo n.º 4
0
    def setup_class(cls):
        params = Configuration(common.TEST_CONF_ROIPAC).__dict__
        params[cf.TEMP_MLOOKED_DIR] = os.path.join(params[cf.OUT_DIR],
                                                   cf.TEMP_MLOOKED_DIR)
        conv2tif.main(params)
        prepifg.main(params)

        params[cf.REF_EST_METHOD] = 2

        xlks, _, crop = cf.transform_params(params)

        dest_paths, headers = common.repair_params_for_correct_tests(
            params[cf.OUT_DIR], params)
        correct._copy_mlooked(params)
        copied_dest_paths = [
            os.path.join(params[cf.TEMP_MLOOKED_DIR], os.path.basename(d))
            for d in dest_paths
        ]
        del dest_paths
        # start run_pyrate copy
        ifgs = common.pre_prepare_ifgs(copied_dest_paths, params)
        mst_grid = common.mst_calculation(copied_dest_paths, params)
        refx, refy = pyrate.core.refpixel.ref_pixel_calc_wrapper(params)

        params[cf.REFX] = refx
        params[cf.REFY] = refy
        params[cf.ORBFIT_OFFSET] = True

        # Estimate and remove orbit errors
        pyrate.core.orbital.remove_orbital_error(ifgs, params)
        ifgs = common.prepare_ifgs_without_phase(copied_dest_paths, params)
        for ifg in ifgs:
            ifg.close()

        correct._update_params_with_tiles(params)
        _, ifgs = pyrate.core.ref_phs_est.ref_phase_est_wrapper(params)
        ifgs[0].open()
        r_dist = covariance.RDist(ifgs[0])()
        ifgs[0].close()
        # Calculate interferogram noise
        maxvar = [
            covariance.cvd(i, params, r_dist)[0] for i in copied_dest_paths
        ]
        for ifg in ifgs:
            ifg.open()
        vcmt = covariance.get_vcmt(ifgs, maxvar)
        for ifg in ifgs:
            ifg.close()
            ifg.open()
            ifg.nodata_value = 0.0

        params[cf.TIME_SERIES_METHOD] = 2
        params[cf.PARALLEL] = 1
        # Calculate time series
        cls.tsincr, cls.tscum, _ = common.calculate_time_series(ifgs,
                                                                params,
                                                                vcmt,
                                                                mst=mst_grid)

        params[cf.PARALLEL] = 0
        # Calculate time series serailly by the pixel
        cls.tsincr_0, cls.tscum_0, _ = common.calculate_time_series(
            ifgs, params, vcmt, mst=mst_grid)

        # copy legacy data
        SML_TIME_SERIES_DIR = os.path.join(common.SML_TEST_DIR, 'time_series')
        tsincr_path = os.path.join(SML_TIME_SERIES_DIR,
                                   'ts_incr_interp0_method2.csv')
        ts_incr = np.genfromtxt(tsincr_path)

        tscum_path = os.path.join(SML_TIME_SERIES_DIR,
                                  'ts_cum_interp0_method2.csv')
        ts_cum = np.genfromtxt(tscum_path)

        cls.ts_incr = np.reshape(ts_incr,
                                 newshape=cls.tsincr_0.shape,
                                 order='F')
        cls.ts_cum = np.reshape(ts_cum, newshape=cls.tscum_0.shape, order='F')
        cls.params = params