def test_pareto_sols(): pareto_sols = np.array([ [8, 184], [9.33, 181.33], [10.67, 178.67], [12, 176], [13.33, 173.33], [14.67, 170.67], [16, 168], [17.33, 165.33], [18.67, 162.67], [20, 160], ]) assert Helper.array_equal(py_augmecon.unique_pareto_sols, pareto_sols, 2)
def test_pareto_sols(): pareto_sols = np.array([ [3075000, 62460, 33000], [3085000, 61980, 32333.33], [3108333.33, 60860, 30777.78], [3115000, 60540, 30333.33], [3131666.67, 59740, 29222.22], [3155000, 58620, 27666.67], [3178333.33, 57500, 26111.11], [3195000, 56700, 25000], [3201666.67, 56380, 24555.56], [3225000, 55260, 23000], [3255000, 54780, 23666.67], [3375000, 52860, 26333.33], [3495000, 50940, 29000], [3615000, 49020, 31666.67], [3735000, 47100, 34333.33], [3855000, 45180, 37000], ]) assert Helper.array_equal(py_augmecon.unique_pareto_sols, pareto_sols, 2)
def test_pareto_sols(): pareto_sols = Helper.read_excel(xlsx, "pareto_sols").to_numpy() assert Helper.array_equal(py_augmecon.unique_pareto_sols, pareto_sols, 2)
def test_payoff_table(): payoff = Helper.read_excel(xlsx, "payoff_table").to_numpy() assert Helper.array_equal(py_augmecon.model.payoff, payoff, 2)
def test_payoff_table(): payoff = np.array([[20, 160], [8, 184]]) assert Helper.array_equal(py_augmecon.model.payoff, payoff, 2)
def test_payoff_table(): payoff = np.array([[3075000, 62460, 33000], [3855000, 45180, 37000], [3225000, 55260, 23000]]) assert Helper.array_equal(py_augmecon.model.payoff, payoff, 2)
def unit_commitment_model(): model = ConcreteModel() # Define input files xlsx = pd.ExcelFile( f"{Path(__file__).parent.absolute()}/input/unit_commitment.xlsx", engine="openpyxl", ) system_demand = Helper.read_excel(xlsx, "SystemDemand") storage_systems = Helper.read_excel(xlsx, "StorageSystems") generators = Helper.read_excel(xlsx, "Generators") generator_step_size = Helper.read_excel(xlsx, "GeneratorStepSize") generator_step_cost = Helper.read_excel(xlsx, "GeneratorStepCost") pv_generation = Helper.read_excel(xlsx, "PVGeneration") # Define sets model.T = Set(ordered=True, initialize=system_demand.index) model.I = Set(ordered=True, initialize=generators.index) model.F = Set(ordered=True, initialize=generator_step_size.columns) model.S = Set(ordered=True, initialize=storage_systems.index) # Define parameters model.Pmax = Param(model.I, within=NonNegativeReals, mutable=True) model.Pmin = Param(model.I, within=NonNegativeReals, mutable=True) model.RU = Param(model.I, within=NonNegativeReals, mutable=True) model.RD = Param(model.I, within=NonNegativeReals, mutable=True) model.SUC = Param(model.I, within=NonNegativeReals, mutable=True) model.SDC = Param(model.I, within=NonNegativeReals, mutable=True) model.Pini = Param(model.I, within=NonNegativeReals, mutable=True) model.uini = Param(model.I, within=Binary, mutable=True) model.C = Param(model.I, model.F, within=NonNegativeReals, mutable=True) model.B = Param(model.I, model.F, within=NonNegativeReals, mutable=True) model.SystemDemand = Param(model.T, within=NonNegativeReals, mutable=True) model.Emissions = Param(model.I, within=NonNegativeReals, mutable=True) model.PV = Param(model.T, within=NonNegativeReals, mutable=True) model.ESS_Pmax = Param(model.S, within=NonNegativeReals, mutable=True) model.ESS_SOEmax = Param(model.S, within=NonNegativeReals, mutable=True) model.ESS_SOEini = Param(model.S, within=NonNegativeReals, mutable=True) model.ESS_Eff = Param(model.S, within=NonNegativeReals, mutable=True) # Give values to parameters of the generators for i in model.I: model.Pmin[i] = generators.loc[i, "Pmin"] model.Pmax[i] = generators.loc[i, "Pmax"] model.RU[i] = generators.loc[i, "RU"] model.RD[i] = generators.loc[i, "RD"] model.SUC[i] = generators.loc[i, "SUC"] model.SDC[i] = generators.loc[i, "SDC"] model.Pini[i] = generators.loc[i, "Pini"] model.uini[i] = generators.loc[i, "uini"] model.Emissions[i] = generators.loc[i, "Emissions"] for f in model.F: model.B[i, f] = generator_step_size.loc[i, f] model.C[i, f] = generator_step_cost.loc[i, f] # Add system demand and PV generation for t in model.T: model.SystemDemand[t] = system_demand.loc[t, "SystemDemand"] model.PV[t] = pv_generation.loc[t, "PVGeneration"] # Give values to ESS parameters for s in model.S: model.ESS_Pmax[s] = storage_systems.loc[s, "Power"] model.ESS_SOEmax[s] = storage_systems.loc[s, "Energy"] model.ESS_SOEini[s] = storage_systems.loc[s, "SOEini"] model.ESS_Eff[s] = storage_systems.loc[s, "Eff"] # Define decision variables model.P = Var(model.I, model.T, within=NonNegativeReals) model.Pres = Var(model.T, within=NonNegativeReals) model.b = Var(model.I, model.F, model.T, within=NonNegativeReals) model.u = Var(model.I, model.T, within=Binary) model.CSU = Var(model.I, model.T, within=NonNegativeReals) model.CSD = Var(model.I, model.T, within=NonNegativeReals) model.SOE = Var(model.S, model.T, within=NonNegativeReals) model.Pch = Var(model.S, model.T, within=NonNegativeReals) model.Pdis = Var(model.S, model.T, within=NonNegativeReals) model.u_ess = Var(model.S, model.T, within=Binary) # -------------------------------------- # Define the objective functions # -------------------------------------- def cost_objective(model): return sum( sum( sum(model.C[i, f] * model.b[i, f, t] for f in model.F) + model.CSU[i, t] + model.CSD[i, t] for i in model.I) for t in model.T) def emissions_objective(model): return sum( sum(model.P[i, t] * model.Emissions[i] for i in model.I) for t in model.T) def unmet_objective(model): return sum(model.Pres[t] for t in model.T) # -------------------------------------- # Define the regular constraints # -------------------------------------- def power_decomposition_rule1(model, i, t): return model.P[i, t] == sum(model.b[i, f, t] for f in model.F) def power_decomposition_rule2(model, i, f, t): return model.b[i, f, t] <= model.B[i, f] def power_min_rule(model, i, t): return model.P[i, t] >= model.Pmin[i] * model.u[i, t] def power_max_rule(model, i, t): return model.P[i, t] <= model.Pmax[i] * model.u[i, t] def ramp_up_rule(model, i, t): if model.T.ord(t) == 1: return model.P[i, t] - model.Pini[i] <= 60 * model.RU[i] if model.T.ord(t) > 1: return model.P[i, t] - model.P[i, model.T.prev(t)] <= 60 * model.RU[i] def ramp_down_rule(model, i, t): if model.T.ord(t) == 1: return (model.Pini[i] - model.P[i, t]) <= 60 * model.RD[i] if model.T.ord(t) > 1: return (model.P[i, model.T.prev(t)] - model.P[i, t]) <= 60 * model.RD[i] def start_up_cost(model, i, t): if model.T.ord(t) == 1: return model.CSU[i, t] >= model.SUC[i] * (model.u[i, t] - model.uini[i]) if model.T.ord(t) > 1: return model.CSU[i, t] >= model.SUC[i] * ( model.u[i, t] - model.u[i, model.T.prev(t)]) def shut_down_cost(model, i, t): if model.T.ord(t) == 1: return model.CSD[i, t] >= model.SDC[i] * (model.uini[i] - model.u[i, t]) if model.T.ord(t) > 1: return model.CSD[i, t] >= model.SDC[i] * ( model.u[i, model.T.prev(t)] - model.u[i, t]) def ESS_SOEupdate(model, s, t): if model.T.ord(t) == 1: return (model.SOE[s, t] == model.ESS_SOEini[s] + model.ESS_Eff[s] * model.Pch[s, t] - model.Pdis[s, t] / model.ESS_Eff[s]) if model.T.ord(t) > 1: return (model.SOE[s, t] == model.SOE[s, model.T.prev(t)] + model.ESS_Eff[s] * model.Pch[s, t] - model.Pdis[s, t] / model.ESS_Eff[s]) def ESS_SOElimit(model, s, t): return model.SOE[s, t] <= model.ESS_SOEmax[s] def ESS_Charging(model, s, t): return model.Pch[s, t] <= model.ESS_Pmax[s] * model.u_ess[s, t] def ESS_Discharging(model, s, t): return model.Pdis[s, t] <= model.ESS_Pmax[s] * (1 - model.u_ess[s, t]) def Balance(model, t): return model.PV[t] + sum(model.P[i, t] for i in model.I) + sum( model.Pdis[s, t] for s in model.S) == model.SystemDemand[t] - model.Pres[t] + sum( model.Pch[s, t] for s in model.S) def Pres_max(model, t): return model.Pres[t] <= 0.1 * model.SystemDemand[t] # -------------------------------------- # Add components to the model # -------------------------------------- # Add the constraints to the model model.power_decomposition_rule1 = Constraint( model.I, model.T, rule=power_decomposition_rule1) model.power_decomposition_rule2 = Constraint( model.I, model.F, model.T, rule=power_decomposition_rule2) model.power_min_rule = Constraint(model.I, model.T, rule=power_min_rule) model.power_max_rule = Constraint(model.I, model.T, rule=power_max_rule) model.start_up_cost = Constraint(model.I, model.T, rule=start_up_cost) model.shut_down_cost = Constraint(model.I, model.T, rule=shut_down_cost) model.ConSOEUpdate = Constraint(model.S, model.T, rule=ESS_SOEupdate) model.ConCharging = Constraint(model.S, model.T, rule=ESS_Charging) model.ConDischarging = Constraint(model.S, model.T, rule=ESS_Discharging) model.ConSOElimit = Constraint(model.S, model.T, rule=ESS_SOElimit) model.ConGenUp = Constraint(model.I, model.T, rule=ramp_up_rule) model.ConGenDown = Constraint(model.I, model.T, rule=ramp_down_rule) model.ConBalance = Constraint(model.T, rule=Balance) model.Pres_max = Constraint(model.T, rule=Pres_max) # Add the objective functions to the model using ObjectiveList(). Note # that the first index is 1 instead of 0! model.obj_list = ObjectiveList() model.obj_list.add(expr=cost_objective(model), sense=minimize) model.obj_list.add(expr=emissions_objective(model), sense=minimize) model.obj_list.add(expr=unmet_objective(model), sense=minimize) # By default deactivate all the objective functions for o in range(len(model.obj_list)): model.obj_list[o + 1].deactivate() return model