Exemplo n.º 1
0
    def setUp(self):
        """
        Note: This actually requires quite a lot of things to be working to run (get_dats does quite a lot of work)
        Returns:

        """
        print('running setup')
        # SetUp before tests
        helpers.clear_outputs(output_dir)
        self.dats = get_dats([717, 719, 720, 723, 724, 725], exp2hdf=Testing_Exp2HDF, overwrite=True)
Exemplo n.º 2
0
class TestDatAttributeWithData(TestCase):
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_dir)
    T: transition.Transition = Testing_Transition(dat)

    def test_get_data(self):
        data = self.T.get_data('x')
        print(data)
        expected = [-276.57, -276.56177, -276.55353]
        self.assertTrue(np.allclose(expected, data[:3]))

    def test_set_data(self):
        data = np.linspace(0, 100, 1000)
        self.T.set_data('test_data', data)
        get_data = self.T.get_data('test_data')
        self.assertTrue(np.allclose(data, get_data))

    def test_specific_data_descriptors(self):
        sdd = self.T.specific_data_descriptors_keys
        print(sdd)
        self.assertIsInstance(sdd['test_data'], DataDescriptor)

    def test_set_data_descriptor(self):
        orig = self.T.get_descriptor('x')
        new = copy.copy(orig)
        new.multiply = 2.0
        self.T.set_data_descriptor(new, 'test_descriptor')
        new_get = self.T.get_descriptor('test_descriptor')
        self.assertEqual(new, new_get)

    def test_get_descriptor(self):
        desc = self.T.get_descriptor('x')
        print(desc)
        expected = DataDescriptor('/Experiment Copy/x_array')
        self.assertEqual(expected, desc)
Exemplo n.º 3
0
class TestEntropy(TestCase):
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_directory=output_dir)
    E = Entropy(dat)

    def test_get_default_params(self):
        default_pars = self.E.get_default_params()
        self.assertEqual(DEFAULT_PARAMS, default_pars)
        self.assertTrue(True)

    def test_get_non_default_params(self):
        pars = self.E.get_default_params(self.E.x, self.E.data[0:5])
        self.assertTrue(np.all([isinstance(p, lm.Parameters) for p in pars]))

    def test_get_default_func(self):
        self.assertEqual(entropy_nik_shape, self.E.get_default_func())

    def test_get_avg_entropy(self):
        fit = self.E.avg_fit
        print(fit.best_values)
        expected = (0.7149, 0.0736, -0.969, 16.384)
        bv = fit.best_values
        self.assertTrue(
            np.allclose(expected, (bv.dS, bv.dT, bv.mid, bv.theta),
                        rtol=0.01,
                        atol=0.01))
Exemplo n.º 4
0
class TestExpConfigGroupDatAttribute(TestCase):
    helpers.clear_outputs(output_dir)
    exp2hdf = helpers.get_testing_Exp2HDF(dat_dir=dat_dir,
                                          output_dir=output_dir)(9111)
    builder = DatHDFBuilder(exp2hdf, init_level='min')
    builder.create_hdf()
    builder.copy_exp_data()
    builder.init_DatHDF()
    builder.init_base_attrs()
    dat = builder.dat
    E = Testing_ExpConfigDatAttribute(dat, exp_config=ExpConfig(9111))

    def setUp(self):
        """Runs before every test"""
        pass

    def tearDown(self):
        """Runs after every test"""
        pass

    def test__set_default_data_descriptors(self):
        self.E._set_default_data_descriptors()
        with h5py.File(self.E.hdf.hdf_path, 'r') as f:
            group = f.get(self.E.group_name + '/Default DataDescriptors')
            keys = group.keys()
            self.assertTrue(
                {'cscurrent', 'cscurrent_2d', 'x_array', 'y_array'} -
                set(keys) == set())  # Check expected keys are there

    def test__initialize_minimum(self):
        self.E.initialize_minimum()
        self.assertTrue(self.E.initialized)

    def test__set_sweeplog_subs(self):
        self.E._set_sweeplog_subs()
        with h5py.File(self.E.hdf.hdf_path, 'r') as f:
            group = f.get(self.E.group_name)
            subs = HDU.get_attr(group, 'sweeplog_substitutions', None)
            self.assertEqual(subs, {'FastDAC 1': 'FastDAC'})

    def test_get_sweeplogs(self):
        sweeplogs = self.E.get_sweeplogs()
        self.assertEqual(sweeplogs['filenum'], 9111)

    def test_get_default_data_infos(self):
        self.test__set_default_data_descriptors()
        default_infos = self.E.get_default_data_infos()
        expected_info = DataInfo('i_sense')
        self.assertEqual(default_infos['cscurrent'], expected_info)

    def test_clear_caches(self):
        self.E.clear_caches()
        self.assertTrue(True)
Exemplo n.º 5
0
dat_dir = os.path.abspath('fixtures/dats/2020Sep')
"""
Contents of dat_dir relevant in this file:
    Dat9111: Square entropy with dS ~Ln2

"""

# Where to put outputs (i.e. DatHDFs)
output_dir = os.path.abspath('Outputs/test_DatHDFBuilder')
print(os.path.abspath('unit'))

Testing_Exp2HDF = get_testing_Exp2HDF(dat_dir, output_dir)

# SetUp before tests
helpers.clear_outputs(output_dir)
exp2hdf = Testing_Exp2HDF(9111, 'base')
builder = DatHDFBuilder(exp2hdf, 'min')
hdf_folder_path = os.path.join(output_dir, 'Dat_HDFs')
dat_hdf_path = os.path.join(
    hdf_folder_path, 'dat9111.h5')  # if datname=='base' it's not in filepath


class TestDatHDFBuilder(TestCase):
    def _del_hdf_contents(self):
        if os.path.exists(hdf_folder_path):
            for root, dirs, files in os.walk(hdf_folder_path):
                for f in files:
                    os.remove(os.path.join(hdf_folder_path, f))
                for d in dirs:
                    shutil.rmtree(os.path.join(hdf_folder_path, d))
Exemplo n.º 6
0
class TestFittingAttribute(TestCase):
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_dir)
    T: transition.Transition = Testing_Transition(dat)

    def tearDown(self):
        """Runs AFTER every test"""
        pass

    def test_get_default_params(self):
        default_pars = self.T.get_default_params()
        self.assertEqual(transition.default_transition_params(), default_pars)

    def test_get_default_func(self):
        func = self.T.get_default_func()
        self.assertEqual(transition.i_sense, func)

    def test_default_data_names(self):
        names = self.T.default_data_names()
        print(names)
        expected = ['x', 'i_sense']
        self.assertEqual(expected, names)

    def test_clear_caches(self):
        self.T.clear_caches()
        self.assertTrue(True)

    def test_get_centers(self):
        centers = self.T.get_centers()
        expected = [
            28.945195081474278, 30.14704210128557, 18.172868224059584,
            13.886815652413931, 15.613973966508519
        ]
        close = [
            np.isclose(e, r, atol=0.01, rtol=0.001)
            for e, r in zip(expected, centers[0:5])
        ]
        print(close)
        self.assertTrue(all(close))

    def test_avg_data(self):
        avg = self.T.avg_data
        self.assertEqual(70842, sum(~np.isnan(avg)))

    def test_avg_x(self):
        avg_x = self.T.avg_x
        print(avg_x)
        expected = [-296.65248355, -296.64424349, -296.63600343]
        self.assertTrue(np.allclose(expected, avg_x[:3], atol=0.00001))

    def test_avg_data_std(self):
        avg_data_std = self.T.avg_data_std
        print(avg_data_std)
        expected = [0.02174817, 0.02046346, 0.01803641]
        self.assertTrue(np.allclose(expected, avg_data_std[0:3], atol=0.0001))

    def test_avg_fit(self):
        avg_fit = self.T.avg_fit
        self.assertAlmostEqual(13.7, avg_fit.best_values.theta, delta=0.1)

    def test_row_fits(self):
        row_fits = self.T.row_fits
        for f in row_fits:
            self.assertIsInstance(f.best_values.mid, float)

    def test_get_avg_data(self):
        avg_data = self.T.get_avg_data(name='testavg')
        avd2, avg_std, avg_x = self.T.get_avg_data(return_std=True,
                                                   return_x=True,
                                                   name='testavg')
        self.assertTrue(
            np.allclose(avg_data, avd2, atol=0.0001, equal_nan=True))
        self.assertIsInstance(avg_std, np.ndarray)

    def test__make_avg_data(self):
        self.test_get_avg_data()
        self.assertTrue(True)

    def test_get_fit_make(self):
        fit = self.T.get_fit(which='row',
                             row=10,
                             name='test_fit',
                             check_exists=False)
        print(fit.best_values)
        expected = 19.57
        self.assertTrue(np.isclose(expected, fit.best_values.mid, atol=0.01))
        return fit

    def test_get_fit(self):
        ofit = self.test_get_fit_make()
        fit = self.T.get_fit(which='row',
                             row=10,
                             name='test_fit',
                             check_exists=True)
        self.assertEqual(ofit, fit)
        with self.assertRaises(NotFoundInHdfError):
            self.T.get_fit(name='non_existing', check_exists=True)

    def test__get_fit_from_path(self):
        self.test_avg_fit()
        path = '/Transition/Avg Fits/default_avg'
        fit = self.T._get_fit_from_path(path)
        print(fit.best_values)
        self.assertAlmostEqual(13.7, fit.best_values.theta, delta=0.1)

        # Test on non existing path
        path = self.test__generate_fit_path()
        with self.assertRaises(NotFoundInHdfError):
            self.T._get_fit_from_path(path)

    def test_fit_paths(self):
        [
            self.T.get_fit('row', i, 'few_test_fits', check_exists=False)
            for i in range(5)
        ]  # Generate a few fits
        # rows = self.T.row_fits  # To generate some fit paths if not already existing
        paths = self.T.fit_paths
        self.assertIsInstance(paths, FitPaths)
        rows = self.T.fit_paths.row_fits
        expected = '/Transition/Row Fits/0/few_test_fits_row[0]'
        self.assertEqual(expected, rows['few_test_fits_row[0]'])

    def test__get_fit_path_from_fit_id(self):
        params = transition.default_transition_params()
        params[
            'const'].value = 4.001  # So I know it doesn't match any other tests
        func = transition.i_sense
        [
            self.T.get_fit('row',
                           i,
                           'few_test_fits',
                           initial_params=params,
                           fit_func=func,
                           check_exists=False,
                           overwrite=True) for i in range(2)
        ]  # Generate a few fits
        # fit_path: str = list(self.T.fit_paths.all_fits.values())[0]
        # print(fit_path)
        # fit: FitInfo = self.T._get_fit_from_path(fit_path)
        # print(params, fit.params)
        params = transition.default_transition_params(
        )  # In case they were modified during fitting
        params['const'].value = 4.001  # To match same as before
        fit_id = FitIdentifier(params, transition.i_sense, self.T.data[0])
        path = self.T._get_fit_path_from_fit_id(fit_id)
        self.assertEqual('/Transition/Row Fits/0/few_test_fits_row[0]', path)

    def test__get_fit_path_from_name(self):
        self.test_get_fit_make()
        path = self.T._get_fit_path_from_name('test_fit', which='row', row=10)
        print(path)
        expected = '/Transition/Row Fits/10/test_fit_row[10]'
        self.assertEqual(expected, path)

    def test__generate_fit_path(self):
        path = self.T._generate_fit_path(which='avg', name='new_fit_path')
        print(path)
        expected = '/Transition/Avg Fits/new_fit_path_avg'
        self.assertEqual(expected, path)
        return path

    def test__save_fit(self):
        fit = FitInfo()
        self.T._save_fit(fit, which='avg', name='test_save_fit')
        with h5py.File(self.T.hdf.hdf_path, 'r') as f:
            print('debug here to find where the file is saved')
            group = f.get('/Transition/Avg Fits/test_save_fit_avg')
            self.assertIsNotNone(group)

    def test__get_fit_parent_group_name(self):
        name = self.T._get_fit_parent_group_name(which='row', row=1)
        print(name)
        expected = '/Transition/Row Fits/1'
        name2 = self.T._get_fit_parent_group_name(which='avg')
        print(name2)
        expected2 = '/Transition/Avg Fits'
        self.assertEqual(expected, name)
        self.assertEqual(expected2, name2)

    def test__calculate_fit(self):
        x = np.linspace(0, 10, 10000)
        np.random.seed(0)
        data = (np.random.random(10000) * 2 - 1) + 2 * x + 5

        def line(x, a, c):
            return x * a + c

        params = lm.Parameters()
        params.add('a', 1)
        params.add('c', 0)
        fit = self.T._calculate_fit(x=x,
                                    data=data,
                                    params=params,
                                    func=line,
                                    auto_bin=True)
        print(fit.best_values)
        self.assertTrue(
            np.allclose((1.9993, 4.9964),
                        (fit.best_values.a, fit.best_values.c),
                        atol=0.001))

    def test_initialize_minimum(self):
        self.T.initialize_minimum()
        self.assertTrue(True)

    def test_set_default_data_descriptors(self):
        self.T.set_default_data_descriptors()
        desc = self.T.specific_data_descriptors_keys['i_sense']
        self.assertIsInstance(desc, DataDescriptor)

    def test__get_fit_saved_name(self):
        avg_name = self.T._generate_fit_saved_name('test', which='avg')
        self.assertEqual('test_avg', avg_name)
        row_name = self.T._generate_fit_saved_name('test', which='row', row=17)
        self.assertEqual('test_row[17]', row_name)
        with self.assertRaises(ValueError):
            a = self.T._generate_fit_saved_name('test', which='not_valid')
Exemplo n.º 7
0
class TestAWG(TestCase):
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_directory=output_dir)
    A = AWG(dat)

    def tearDown(self) -> None:
        """Runs AFTER every test
        """
        pass

    def test_info(self):
        info = self.A.info
        print(info)
        expected = AWGtuple(awg_used=True,
                            outputs={
                                0: [0],
                                1: [1]
                            },
                            wave_len=492,
                            num_adcs=1,
                            samplingFreq=6060.6,
                            measureFreq=6060.6,
                            num_cycles=1,
                            num_steps=148)
        for k in expected._fields:
            self.assertEqual(getattr(expected, k), getattr(info, k))

    def test_aws(self):
        aws = self.A.AWs
        print(aws)
        expected = (np.array([[
            -416.66666, -333.33334, -250., -166.66667, -83.333336, 0.,
            83.333336, 166.66667, 250., 333.33334, 416.66666, 500., 416.66666,
            333.33334, 250., 166.66667, 83.333336, 0., -83.333336, -166.66667,
            -250., -333.33334, -416.66666, -500.
        ],
                              [
                                  4., 4., 4., 4., 4., 103., 4., 4., 4., 4., 4.,
                                  103., 4., 4., 4., 4., 4., 103., 4., 4., 4.,
                                  4., 4., 103.
                              ]]),
                    np.array([[
                        65.375, 52.3, 39.225, 26.15, 13.075, 0., -13.075,
                        -26.15, -39.225, -52.3, -65.375, -78.45, -65.375,
                        -52.3, -39.225, -26.15, -13.075, 0., 13.075, 26.15,
                        39.225, 52.3, 65.375, 78.45
                    ],
                              [
                                  4., 4., 4., 4., 4., 103., 4., 4., 4., 4., 4.,
                                  103., 4., 4., 4., 4., 4., 103., 4., 4., 4.,
                                  4., 4., 103.
                              ]]))
        self.assertTrue(
            all([
                np.allclose(exp, aw)
                for exp, aw in zip(expected, aws.values())
            ]))

    def test_freq(self):
        print(self.A.freq)
        self.assertTrue(np.isclose(12.318, self.A.freq, atol=0.001))

    def test_measure_freq(self):
        print(self.A.measure_freq)
        self.assertEqual(6060.6, self.A.measure_freq)

    def test_numpts(self):
        print(self.A.numpts)
        self.assertEqual(72816, self.A.numpts)

    def test_true_x_array(self):
        print(self.A.true_x_array)
        expected = np.linspace(-276.57000732, 323.42999268, 148)
        self.assertTrue(np.allclose(expected, self.A.true_x_array))

    def test_get_single_wave(self):
        expected = [
            -416.66665649, -416.66665649, -416.66665649, -416.66665649,
            -333.33334351, -333.33334351, -333.33334351, -333.33334351, -250.,
            -250., -250., -250., -166.66667175, -166.66667175, -166.66667175,
            -166.66667175, -83.33333588, -83.33333588, -83.33333588,
            -83.33333588, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0.,
            0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0.,
            0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0,
            0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0.,
            0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0,
            0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0., 0., 0., 0, 0., 0.,
            0., 83.33333588, 83.33333588, 83.33333588, 83.33333588,
            166.66667175, 166.66667175, 166.66667175, 166.66667175, 250., 250.,
            250., 250., 333.33334351, 333.33334351, 333.33334351, 333.33334351,
            416.66665649, 416.66665649, 416.66665649, 416.66665649, 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 500., 500., 500., 500., 500., 500., 500., 500., 500.,
            500., 500., 416.66665649, 416.66665649, 416.66665649, 416.66665649,
            333.33334351, 333.33334351, 333.33334351, 333.33334351, 250., 250.,
            250., 250., 166.66667175, 166.66667175, 166.66667175, 166.66667175,
            83.33333588, 83.33333588, 83.33333588, 83.33333588, 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
            -83.33333588, -83.33333588, -83.33333588, -83.33333588,
            -166.66667175, -166.66667175, -166.66667175, -166.66667175, -250.,
            -250., -250., -250., -333.33334351, -333.33334351, -333.33334351,
            -333.33334351, -416.66665649, -416.66665649, -416.66665649,
            -416.66665649, -500., -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500, -500.,
            -500., -500., -500., -500, -500., -500., -500., -500., -500.,
            -500., -500., -500., -500., -500., -500., -500.
        ]
        self.assertTrue(np.allclose(expected, self.A.get_single_wave(0)))

        print(self.A.get_single_wave(1).shape)
        self.assertTrue(492, self.A.get_single_wave(1).shape)

        with self.assertRaises(NotFoundInHdfError):
            self.A.get_single_wave(3)

    def test_get_full_wave(self):
        print(self.A.get_full_wave(0).shape)

        self.assertEqual((72816, ), self.A.get_full_wave(0).shape)

        with self.assertRaises(NotFoundInHdfError):
            self.A.get_full_wave(3)

    def test_get_single_wave_masks(self):
        print(self.A.get_single_wave_masks(0).shape)
        self.assertEqual((24, 492), self.A.get_single_wave_masks(0).shape)

        with self.assertRaises(NotFoundInHdfError):
            self.A.get_single_wave_masks(3)

    def test_get_full_wave_masks(self):
        print(self.A.get_full_wave_masks(0).shape)
        self.assertTrue(
            np.allclose((24, 72816),
                        self.A.get_full_wave_masks(0).shape))

        with self.assertRaises(NotFoundInHdfError):
            self.A.get_full_wave_masks(3)

    def test_eval(self):
        for x, expected in zip([-276.57001, -275.33398, -274.41110, 323.42999],
                               [-416.7, 500, 83.3, -500]):
            print(self.A.eval(x, wave_num=0))
            self.assertTrue(
                np.isclose(expected, self.A.eval(x, wave_num=0), atol=0.1))
Exemplo n.º 8
0
class TestData(TestCase):
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_directory=output_dir)
    D: data.Data = Testing_Data(dat)

    def setUp(self) -> None:
        """Runs BEFORE every test"""
        pass

    def tearDown(self):
        """Runs AFTER every test"""
        pass

    def test__set_exp_config_data_descriptors(self):
        self.D._set_exp_config_DataDescriptors()
        with h5py.File(self.D.hdf.hdf_path, 'r') as f:
            g = f.get(self.D.group_name).get('Descriptors')
            expected_descriptor = DataDescriptor(
                data_path='/Experiment Copy/cscurrent_2d')
            descriptor = HDU.get_attr(g, 'i_sense', dataclass=DataDescriptor)
            self.assertEqual(descriptor, expected_descriptor)

    def test_keys(self):
        self.D.initialize_minimum()

        print(self.D.keys)
        self.assertEqual(
            set(), {
                'y', 'Experiment Copy/x_array', 'i_sense',
                'Experiment Copy/fdAW_1', 'x', 'Experiment Copy/fdAW_0',
                'x_array', 'Experiment Copy/cscurrent_2d',
                'Experiment Copy/y_array'
            } - set(self.D.keys))

    def test_data_keys(self):
        self.D.initialize_minimum()
        keys = self.D.data_keys
        self.assertEqual(
            set(), {
                'Experiment Copy/cscurrent_2d', 'Experiment Copy/fdAW_0',
                'Experiment Copy/fdAW_1', 'Experiment Copy/x_array',
                'Experiment Copy/y_array'
            } - set(keys))

    def test__get_data_keys(self):
        keys = self.D._get_data_keys()
        expected = [
            'Experiment Copy/cscurrent_2d', 'Experiment Copy/fdAW_0',
            'Experiment Copy/fdAW_1', 'Experiment Copy/x_array',
            'Experiment Copy/y_array'
        ]
        self.assertEqual(expected, keys)

    def test_data_descriptors(self):
        self.D.initialize_minimum()
        descriptors = self.D.data_descriptors
        expected_descriptor = DataDescriptor('/Experiment Copy/cscurrent_2d')
        expected_descriptor_hash = hash(expected_descriptor)
        self.assertTrue(expected_descriptor_hash in
                        [hash(d) for d in descriptors.values()])

    def test__get_all_descriptors(self):
        self.D.initialize_minimum()
        descriptors = self.D._get_all_descriptors()
        expected_descriptor = DataDescriptor('/Experiment Copy/cscurrent_2d')
        # expected_descriptor_hash = hash(expected_descriptor)
        # print([expected_descriptor == d for d in descriptors.values()])
        # print([expected_descriptor is d for d in descriptors.values()])
        # print([hash(expected_descriptor) == hash(d) for d in descriptors.values()])
        # print(f'{expected_descriptor}\n{list(descriptors.values())[0]}')
        # print(expected_descriptor.__eq__(list(descriptors.values())[0]))
        # print(hash(expected_descriptor), hash(list(descriptors.values())[0]))
        # print(expected_descriptor.__class__, list(descriptors.values())[0].__class__)
        self.assertTrue(expected_descriptor in descriptors.values())

    def test_get_data_descriptor(self):
        self.D.initialize_minimum()
        d = self.D.get_data_descriptor('i_sense')
        expected = DataDescriptor('/Experiment Copy/cscurrent_2d')
        self.assertEqual(d, expected)

    def test__get_default_descriptor_for_data(self):
        # self.D.initialize_minimum()
        descriptors = [
            self.D._get_default_descriptor_for_data(name)
            for name in self.D.data_keys
        ]
        expected_descriptor = DataDescriptor('/Experiment Copy/cscurrent_2d')
        expected_descriptor_hash = hash(expected_descriptor)
        self.assertTrue(expected_descriptor in descriptors)

    def test__get_data_path_from_hdf(self):
        path = self.D._get_data_path_from_hdf('cscurrent_2d')
        self.assertEqual(path, '/Experiment Copy/cscurrent_2d')

    def test_set_data_descriptor(self):
        self.D.initialize_minimum()
        descriptor = DataDescriptor('/Experiment Copy/cscurrent_2d',
                                    offset=10,
                                    multiply=20)
        self.D.set_data_descriptor(descriptor, name='test')
        d = self.D.get_data_descriptor('test', filled=False)
        self.assertEqual(descriptor, d)

    def test_DataDescriptor_multiply_offset(self):
        self.D.initialize_minimum()
        descriptor = DataDescriptor('/Experiment Copy/cscurrent_2d',
                                    offset=10,
                                    multiply=20)
        self.D.set_data_descriptor(descriptor, name='test')
        d = self.D.get_data_descriptor('test', filled=True)
        o_d = self.D.get_data_descriptor('i_sense', filled=True)
        self.assertTrue(np.allclose((o_d.data + 10) * 20, d.data, atol=1e-5))

    def test_set_data_descriptor_raises(self):
        with self.assertRaises(FileNotFoundError):
            descriptor = DataDescriptor('notafile')
            self.D.set_data_descriptor(descriptor, name='test2')

    def test_get_data(self):
        self.D.initialize_minimum()
        isense = self.D.get_data('i_sense')
        orig_x = self.D.get_data('x_array')
        x = self.D.get_data('x')
        self.assertTrue(np.all(orig_x == x))
        self.assertEqual(isense.shape, (50, 72816))

    def test_get_orig_data(self):
        self.D.initialize_minimum()
        d = self.D.get_data_descriptor('i_sense')
        d.multiply = 2.0
        self.D.set_data_descriptor(d, 'i_sense')
        mod_isense = self.D.get_data('i_sense')
        orig_isense = self.D.get_orig_data('i_sense')
        self.assertTrue(np.all(orig_isense == mod_isense / 2.0))

    def test_modifiy_data(self):
        self.D.initialize_minimum()
        d = self.D.get_data_descriptor('x')
        odata = d.data[:]
        d.multiply = 2.0
        d.offset = 10
        self.D.set_data_descriptor(d)
        ndata = self.D.get_data('x')
        self.assertTrue(np.allclose(odata, (ndata / 2.0 - 10), atol=1e-5))

    def test_set_data(self):
        self.D.initialize_minimum()
        data = np.ones((100, 1000, 10))
        self.D.set_data(data, 'test_data')
        get_data = self.D.get_data('test_data')
        self.assertTrue(np.allclose(data, get_data))

    def test_clear_caches(self):
        self.D.clear_caches()
        self.assertTrue(True)

    def test__initialize_minimum(self):
        self.D.initialize_minimum()
        self.assertTrue(self.D.initialized)
Exemplo n.º 9
0
class TestLogs(TestCase):
    """Note: Many of these tests depend on dat.ExpConfig working well, so look there if these fail too."""
    # Initial Setup
    helpers.clear_outputs(output_dir)
    dat = helpers.init_testing_dat(9111, output_dir)
    Logs = Testing_Logs(
        dat
    )  # This should make Logs without running init, and will not assign it to the dat yet

    def tearDown(self):
        """Runs AFTER every test"""
        pass

    def setUp(self):
        """Runs BEFORE every test"""
        self.Logs._init_sweeplogs()

    def test_0_init_sweeplogs(self):  # This has to run before all the others
        # Note: I run this before ALL tests anyway
        self.Logs._init_sweeplogs()
        self.assertIsInstance(self.Logs.sweeplogs, dict)

    def test_1__get_sweeplogs_from_exp(self):
        sweeplogs = self.Logs._get_sweeplogs_from_exp()
        self.assertIsInstance(sweeplogs, dict)

    def test_2__init_srss(self):
        self.Logs._init_srss()
        srss = self.Logs.srss
        self.assertIsInstance(srss, logs.SRSs)

    def test_3__init_babydac(self):
        self.Logs._init_babydac()
        bds = self.Logs.bds
        self.assertEqual(bds['CA0 offset'], -100)

    def test_4__init_fastdac(self):
        self.Logs._init_fastdac()
        fds = self.Logs.fds
        self.assertEqual(fds['LP*2'], -490.11)
        fastdac = self.Logs.Fastdac
        self.assertEqual(fastdac.measure_freq, 6060.6)
        self.assertEqual(fastdac.dacs, fds)

    def test_5__init_awg(self):
        self.Logs._init_awg()
        awg: logs.AWGtuple = self.Logs.awg
        # expected = Logs.AWGtuple(outputs={0: [0], 1: [1]}, wave_len=492, num_adcs=1, samplingFreq=6060.6,
        #                          measureFreq=6060.6, num_cycles=1, num_steps=148)
        expected = [{0: [0], 1: [1]}, 492, 1, 6060.6, 6060.6, 1, 148]
        self.assertEqual(expected, [
            awg.outputs, awg.wave_len, awg.num_adcs, awg.samplingFreq,
            awg.measureFreq, awg.num_cycles, awg.num_steps
        ])

    def test_6__init_temps(self):
        self.Logs._init_temps()
        temps: logs.TEMPtuple = self.Logs.temps
        expected = [49.824, 3.8568, 4.671, 0.0499335, 0.66458]
        self.assertEqual(
            expected,
            [temps.fiftyk, temps.fourk, temps.mag, temps.mc, temps.still])

    def test_7__init_mags(self):
        self.Logs._init_mags()
        mags = self.Logs.mags
        expected = [-49.98, 'magy', 54.33]
        self.assertEqual(expected,
                         [mags.magy.field, mags.magy.name, mags.magy.rate])

    def test_7a__init_other(self):
        self.Logs._init_other()
        key_expected = {
            'comments': 'transition, square entropy, repeat, ',
            'xlabel': 'LP*200 (mV)',
            'ylabel': 'Repeats',
            'measure_freq': 6060.6,
            'sampling_freq': 6060.6,
            'sweeprate': 49.939,
        }
        for k, v in key_expected.items():
            val = getattr(self.Logs, k)
            if isinstance(val, float):
                self.assertTrue(np.isclose(val, v, atol=0.001))
            else:
                self.assertEqual(v, val)

    def test_8__initialize_minimum(self):
        self.Logs.initialize_minimum()
        self.assertTrue(self.Logs.initialized)

    def test_9_assign_to_dat(self):
        self.dat.Logs = self.Logs
        self.assertEqual(self.dat.Logs, self.Logs)