Exemplo n.º 1
0
def backend_untargeted_tabular(attack, iris_dataset, clipped):
    (_, _), (x_test_iris, y_test_iris) = iris_dataset

    x_test_adv = attack.generate(x_test_iris)

    # TODO remove that platform specific case
    # if framework in ["scikitlearn"]:
    #     np.testing.assert_array_almost_equal(np.abs(x_test_adv - x_test_iris), .1, decimal=5)

    check_adverse_example_x(x_test_adv, x_test_iris)
    # utils_test.check_adverse_example_x(x_test_adv, x_test_iris, bounded=clipped)

    y_pred_test_adv = np.argmax(attack.estimator.predict(x_test_adv), axis=1)
    y_test_true = np.argmax(y_test_iris, axis=1)

    # assert (y_test_true == y_pred_test_adv).any(), "An untargeted attack should have changed SOME predictions"
    assert (bool((y_test_true == y_pred_test_adv).all()) is False
            ), "An untargeted attack should NOT have changed all predictions"

    accuracy = np.sum(y_pred_test_adv == y_test_true) / y_test_true.shape[0]
    logger.info(
        "Accuracy of " + attack.estimator.__class__.__name__ +
        " on Iris with FGM adversarial examples: "
        "%.2f%%",
        (accuracy * 100),
    )
Exemplo n.º 2
0
def back_end_untargeted_images(attack, fix_get_mnist_subset, fix_mlFramework):
    (x_train_mnist, y_train_mnist, x_test_mnist, y_test_mnist) = fix_get_mnist_subset

    x_test_adv = attack.generate(x_test_mnist)

    check_adverse_example_x(x_test_adv, x_test_mnist)

    y_pred = np.argmax(attack.classifier.predict(x_test_mnist), axis=1)
    y_pred_adv = np.argmax(attack.classifier.predict(x_test_adv), axis=1)
    assert (y_pred != y_pred_adv).any()

    if fix_mlFramework in ["keras"]:
        k.clear_session()
Exemplo n.º 3
0
def backend_targeted_tabular(attack, fix_get_iris):
    (x_train_iris, y_train_iris), (x_test_iris, y_test_iris) = fix_get_iris

    targets = random_targets(y_test_iris, nb_classes=3)
    x_test_adv = attack.generate(x_test_iris, **{"y": targets})

    check_adverse_example_x(x_test_adv, x_test_iris)

    y_pred_adv = np.argmax(attack.classifier.predict(x_test_adv), axis=1)
    target = np.argmax(targets, axis=1)
    assert (target == y_pred_adv).any()

    accuracy = np.sum(y_pred_adv == target) / y_test_iris.shape[0]
    logger.info("Success rate of targeted boundary on Iris: %.2f%%", (accuracy * 100))
Exemplo n.º 4
0
def backend_test_defended_images(attack, mnist_dataset):
    (x_train_mnist, y_train_mnist, x_test_mnist, y_test_mnist) = mnist_dataset
    x_train_adv = attack.generate(x_train_mnist)

    check_adverse_example_x(x_train_adv, x_train_mnist)

    y_train_pred_adv = get_labels_np_array(attack.classifier.predict(x_train_adv))
    y_train_labels = get_labels_np_array(y_train_mnist)

    check_adverse_predicted_sample_y(y_train_pred_adv, y_train_labels)

    x_test_adv = attack.generate(x_test_mnist)
    check_adverse_example_x(x_test_adv, x_test_mnist)

    y_test_pred_adv = get_labels_np_array(attack.classifier.predict(x_test_adv))
    check_adverse_predicted_sample_y(y_test_pred_adv, y_test_mnist)
Exemplo n.º 5
0
def backend_targeted_images(attack, fix_get_mnist_subset):
    (x_train_mnist, y_train_mnist, x_test_mnist, y_test_mnist) = fix_get_mnist_subset
    targets = random_targets(y_test_mnist, attack.classifier.nb_classes())
    x_test_adv = attack.generate(x_test_mnist, y=targets)
    assert bool((x_test_mnist == x_test_adv).all()) is False

    y_test_pred_adv = get_labels_np_array(attack.classifier.predict(x_test_adv))

    assert targets.shape == y_test_pred_adv.shape
    assert (targets == y_test_pred_adv).sum() >= (x_test_mnist.shape[0] // 2)

    check_adverse_example_x(x_test_adv, x_test_mnist)

    y_pred_adv = np.argmax(attack.classifier.predict(x_test_adv), axis=1)

    target = np.argmax(targets, axis=1)
    assert (target == y_pred_adv).any()