Exemplo n.º 1
0
    def test_5_pytorch_classifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        self.x_train_mnist = np.reshape(self.x_train_mnist, (self.x_train_mnist.shape[0], 1, 28, 28)).astype(np.float32)

        # Build PyTorchClassifier
        victim_ptc = get_image_classifier_pt()

        # Create the thieved classifier
        thieved_ptc = get_image_classifier_pt(load_init=False)

        # Create random attack
        attack = KnockoffNets(
            classifier=victim_ptc,
            batch_size_fit=BATCH_SIZE,
            batch_size_query=BATCH_SIZE,
            nb_epochs=NB_EPOCHS,
            nb_stolen=NB_STOLEN,
            sampling_strategy="random",
            verbose=False,
        )

        thieved_ptc = attack.extract(x=self.x_train_mnist, thieved_classifier=thieved_ptc)

        victim_preds = np.argmax(victim_ptc.predict(x=self.x_train_mnist), axis=1)
        thieved_preds = np.argmax(thieved_ptc.predict(x=self.x_train_mnist), axis=1)
        acc = np.sum(victim_preds == thieved_preds) / len(victim_preds)

        self.assertGreater(acc, 0.3)

        # Create adaptive attack
        attack = KnockoffNets(
            classifier=victim_ptc,
            batch_size_fit=BATCH_SIZE,
            batch_size_query=BATCH_SIZE,
            nb_epochs=NB_EPOCHS,
            nb_stolen=NB_STOLEN,
            sampling_strategy="adaptive",
            reward="all",
            verbose=False,
        )
        thieved_ptc = attack.extract(x=self.x_train_mnist, y=self.y_train_mnist, thieved_classifier=thieved_ptc)

        victim_preds = np.argmax(victim_ptc.predict(x=self.x_train_mnist), axis=1)
        thieved_preds = np.argmax(thieved_ptc.predict(x=self.x_train_mnist), axis=1)
        acc = np.sum(victim_preds == thieved_preds) / len(victim_preds)

        self.assertGreater(acc, 0.4)

        self.x_train_mnist = np.reshape(self.x_train_mnist, (self.x_train_mnist.shape[0], 28, 28, 1)).astype(np.float32)
    def test_fit_generator(self):
        classifier = get_image_classifier_pt()
        accuracy = (np.sum(
            np.argmax(classifier.predict(self.x_test_mnist), axis=1) ==
            np.argmax(self.y_test_mnist, axis=1)) / self.n_test)
        logger.info("Accuracy: %.2f%%", (accuracy * 100))

        # Create tensors from data
        x_train_tens = torch.from_numpy(self.x_train_mnist)
        x_train_tens = x_train_tens.float()
        y_train_tens = torch.from_numpy(self.y_train_mnist)

        # Create PyTorch dataset and loader
        dataset = torch.utils.data.TensorDataset(x_train_tens, y_train_tens)
        data_loader = DataLoader(dataset=dataset, batch_size=5, shuffle=True)
        data_gen = PyTorchDataGenerator(data_loader,
                                        size=self.n_train,
                                        batch_size=5)

        # Fit model with generator
        classifier.fit_generator(data_gen, nb_epochs=2)
        accuracy_2 = (np.sum(
            np.argmax(classifier.predict(self.x_test_mnist), axis=1) ==
            np.argmax(self.y_test_mnist, axis=1)) / self.n_test)
        logger.info("Accuracy: %.2f%%", (accuracy_2 * 100))

        self.assertEqual(accuracy, 0.32)
        self.assertAlmostEqual(accuracy_2, 0.75, delta=0.1)
Exemplo n.º 3
0
    def test_2_pt(self):
        """
        Test with a PyTorch Classifier.
        :return:
        """
        # Build KerasClassifier
        ptc = get_image_classifier_pt()

        # Get MNIST
        (_, _), (x_test, y_test) = self.mnist

        x_test = x_test.transpose(0, 3, 1, 2).astype(np.float32)

        # First FGSM attack:
        fgsm = FastGradientMethod(estimator=ptc, targeted=True)
        params = {"y": random_targets(y_test, ptc.nb_classes)}
        x_test_adv = fgsm.generate(x_test, **params)

        # Initialize RS object and attack with FGSM
        rs = PyTorchRandomizedSmoothing(
            model=ptc.model,
            loss=ptc._loss,
            optimizer=torch.optim.Adam(ptc.model.parameters(), lr=0.01),
            input_shape=ptc.input_shape,
            nb_classes=ptc.nb_classes,
            channels_first=ptc.channels_first,
            clip_values=ptc.clip_values,
            sample_size=100,
            scale=0.01,
            alpha=0.001,
        )
        fgsm_with_rs = FastGradientMethod(estimator=rs, targeted=True)
        x_test_adv_with_rs = fgsm_with_rs.generate(x_test, **params)

        # Compare results
        # check shapes are equal and values are within a certain range
        self.assertEqual(x_test_adv.shape, x_test_adv_with_rs.shape)
        self.assertTrue((np.abs(x_test_adv - x_test_adv_with_rs) < 0.75).all())

        # Check basic functionality of RS object
        # check predict
        y_test_smooth = rs.predict(x=x_test)
        y_test_base = ptc.predict(x=x_test)
        self.assertEqual(y_test_smooth.shape, y_test.shape)
        self.assertTrue((np.sum(y_test_smooth, axis=1) <= np.ones((NB_TEST,))).all())
        self.assertTrue((np.argmax(y_test_smooth, axis=1) == np.argmax(y_test_base, axis=1)).all())

        # check certification
        pred, radius = rs.certify(x=x_test, n=250)
        self.assertEqual(len(pred), NB_TEST)
        self.assertEqual(len(radius), NB_TEST)
        self.assertTrue((radius <= 1).all())
        self.assertTrue((pred < y_test.shape[1]).all())

        # loss gradient
        grad = rs.loss_gradient(x=x_test, y=y_test, sampling=True)
        assert grad.shape == (10, 1, 28, 28)

        # fit
        rs.fit(x=x_test, y=y_test)
Exemplo n.º 4
0
    def test_check_params(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, binary_search_steps=1.0)
        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, binary_search_steps=-1)

        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, max_iter=1.0)
        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, nb_parallel=1.0)
        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, nb_parallel=-1)

        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, batch_size=1.0)
        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, batch_size=-1)

        with self.assertRaises(ValueError):
            _ = ZooAttack(ptc, verbose="true")
Exemplo n.º 5
0
    def test_check_params_L0(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, binary_search_steps="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, binary_search_steps=-1)

        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_iter="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_halving="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_halving=-1)

        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_doubling="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, max_doubling=-1)

        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, batch_size="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniL0Method(ptc, batch_size=-1)
Exemplo n.º 6
0
    def test_5_pytorch_resume(self):
        x_test = np.reshape(self.x_test_mnist,
                            (self.x_test_mnist.shape[0], 1, 28, 28)).astype(
                                np.float32)

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt()

        # HSJ attack
        hsj = HopSkipJump(classifier=ptc,
                          targeted=True,
                          max_iter=10,
                          max_eval=100,
                          init_eval=10)

        params = {"y": self.y_test_mnist[2:3], "x_adv_init": x_test[2:3]}
        x_test_adv1 = hsj.generate(x_test[0:1], **params)
        diff1 = np.linalg.norm(x_test_adv1 - x_test)

        params.update(resume=True, x_adv_init=x_test_adv1)
        x_test_adv2 = hsj.generate(x_test[0:1], **params)
        params.update(x_adv_init=x_test_adv2)
        x_test_adv2 = hsj.generate(x_test[0:1], **params)
        diff2 = np.linalg.norm(x_test_adv2 - x_test)

        self.assertGreater(diff1, diff2)
Exemplo n.º 7
0
    def test_pytorch_mnist_L2(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_test = np.reshape(self.x_test_mnist, (self.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        x_test_original = x_test.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt(from_logits=True)

        # First attack
        cl2m = CarliniL2Method(classifier=ptc, targeted=True, max_iter=10)
        params = {"y": random_targets(self.y_test_mnist, ptc.nb_classes)}
        x_test_adv = cl2m.generate(x_test, **params)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertLessEqual(np.amax(x_test_adv), 1.0)
        self.assertGreaterEqual(np.amin(x_test_adv), 0.0)
        target = np.argmax(params["y"], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target == y_pred_adv).any())
        logger.info("CW2 Success Rate: %.2f", (sum(target == y_pred_adv) / float(len(target))))

        # Second attack
        cl2m = CarliniL2Method(classifier=ptc, targeted=False, max_iter=10)
        x_test_adv = cl2m.generate(x_test)
        self.assertLessEqual(np.amax(x_test_adv), 1.0)
        self.assertGreaterEqual(np.amin(x_test_adv), 0.0)
        target = np.argmax(params["y"], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target != y_pred_adv).any())
        logger.info("CW2 Success Rate: %.2f", (sum(target != y_pred_adv) / float(len(target))))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))), 0.0, delta=0.00001)
    def test_pytorch(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        ptc = get_image_classifier_pt()

        x_train = np.reshape(self.x_train_mnist,
                             (self.n_train, 1, 28, 28)).astype(np.float32)

        attack_ap = AdversarialPatch(ptc,
                                     rotation_max=0.5,
                                     scale_min=0.4,
                                     scale_max=0.41,
                                     learning_rate=5.0,
                                     batch_size=10,
                                     max_iter=5)
        master_seed(seed=1234)
        target = np.zeros(self.x_train_mnist.shape[0])
        patch_adv, _ = attack_ap.generate(x_train, target)

        self.assertAlmostEqual(patch_adv[0, 8, 8], 0.5002671, delta=0.05)
        self.assertAlmostEqual(patch_adv[0, 14, 14], 0.5109714, delta=0.05)
        self.assertAlmostEqual(float(np.sum(patch_adv)),
                               393.09832763671875,
                               delta=1.0)
    def test_pytorch_classifier(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_train_mnist = np.reshape(self.x_train_mnist, (self.x_train_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        x_test_mnist = np.reshape(self.x_test_mnist, (self.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        x_test_original = x_test_mnist.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt(from_logits=True)

        # Attack
        attack_st = SpatialTransformation(
            ptc, max_translation=10.0, num_translations=3, max_rotation=30.0, num_rotations=3
        )
        x_train__mnistadv = attack_st.generate(x_train_mnist)

        self.assertAlmostEqual(x_train__mnistadv[0, 0, 13, 18], 0.627451, delta=0.01)
        self.assertAlmostEqual(attack_st.fooling_rate, 0.57, delta=0.03)

        self.assertEqual(attack_st.attack_trans_x, 0)
        self.assertEqual(attack_st.attack_trans_y, 3)
        self.assertEqual(attack_st.attack_rot, 0.0)

        x_test_adv = attack_st.generate(x_test_mnist)

        self.assertLessEqual(abs(x_test_adv[0, 0, 14, 14] - 0.008591662), 0.01)

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test_mnist))), 0.0, delta=0.00001)
Exemplo n.º 10
0
    def test_check_params_LInf(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, max_iter="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, decrease_factor="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, decrease_factor=-1)

        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, initial_const="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, initial_const=-1)

        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, largest_const="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, largest_const=-1)

        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, const_factor="1.0")
        with self.assertRaises(ValueError):
            _ = CarliniLInfMethod(ptc, const_factor=-1)
    def test_3_pytorch_mnist(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_train_mnist = np.swapaxes(self.x_train_mnist, 1, 3).astype(np.float32)
        x_test_mnist = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)
        x_test_original = x_test_mnist.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt()

        # set target label
        target = 0
        y_target = np.zeros([len(self.x_train_mnist), 10])
        for i in range(len(self.x_train_mnist)):
            y_target[i, target] = 1.0

        # Attack
        up = TargetedUniversalPerturbation(
            ptc, max_iter=1, attacker="fgsm", attacker_params={"eps": 0.3, "targeted": True}
        )
        x_train_mnist_adv = up.generate(x_train_mnist, y=y_target)
        self.assertTrue((up.fooling_rate >= 0.2) or not up.converged)

        x_test_mnist_adv = x_test_mnist + up.noise
        self.assertFalse((x_test_mnist == x_test_mnist_adv).all())

        train_y_pred = np.argmax(ptc.predict(x_train_mnist_adv), axis=1)
        test_y_pred = np.argmax(ptc.predict(x_test_mnist_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test_mnist, axis=1) == test_y_pred).all())
        self.assertFalse((np.argmax(self.y_train_mnist, axis=1) == train_y_pred).all())

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test_mnist))), 0.0, delta=0.00001)
Exemplo n.º 12
0
    def test_5_pytorch_mnist(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_test = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)
        x_test_original = x_test.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt()

        # Attack
        nf = NewtonFool(ptc, max_iter=5, batch_size=100)
        x_test_adv = nf.generate(x_test)

        self.assertFalse((x_test == x_test_adv).all())

        y_pred = ptc.predict(x_test)
        y_pred_adv = ptc.predict(x_test_adv)
        y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred
        y_pred_max = y_pred.max(axis=1)
        y_pred_adv_max = y_pred_adv[y_pred_bool]
        self.assertTrue((y_pred_max >= 0.9 * y_pred_adv_max).all())

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))),
                               0.0,
                               delta=0.00001)
Exemplo n.º 13
0
    def test_pytorch_mnist_LInf(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_test = np.reshape(self.x_test_mnist, (self.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt(from_logits=True)

        # First attack
        clinfm = CarliniLInfMethod(classifier=ptc, targeted=True, max_iter=10, eps=0.5)
        params = {"y": random_targets(self.y_test_mnist, ptc.nb_classes)}
        x_test_adv = clinfm.generate(x_test, **params)
        self.assertFalse((x_test == x_test_adv).all())
        self.assertLessEqual(np.amax(x_test_adv), 1.0 + 1e-6)
        self.assertGreaterEqual(np.amin(x_test_adv), -1e-6)
        target = np.argmax(params["y"], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target == y_pred_adv).any())

        # Second attack
        clinfm = CarliniLInfMethod(classifier=ptc, targeted=False, max_iter=10, eps=0.5)
        x_test_adv = clinfm.generate(x_test)
        self.assertLessEqual(np.amax(x_test_adv), 1.0 + 1e-6)
        self.assertGreaterEqual(np.amin(x_test_adv), -1e-6)

        target = np.argmax(params["y"], axis=1)
        y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        self.assertTrue((target != y_pred_adv).any())
Exemplo n.º 14
0
    def test_check_params(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, max_iter=1.0)
        with self.assertRaises(ValueError):
            _ = SimBA(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, epsilon=-1)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, batch_size=2)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, stride=1.0)
        with self.assertRaises(ValueError):
            _ = SimBA(ptc, stride=-1)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, freq_dim=1.0)
        with self.assertRaises(ValueError):
            _ = SimBA(ptc, freq_dim=-1)

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, order="test")

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, attack="test")

        with self.assertRaises(ValueError):
            _ = SimBA(ptc, targeted="test")
Exemplo n.º 15
0
    def setUpClass(cls):
        super().setUpClass()

        cls.x_train_mnist = np.reshape(cls.x_train_mnist, (cls.x_train_mnist.shape[0], 1, 28, 28)).astype(np.float32)
        cls.x_test_mnist = np.reshape(cls.x_test_mnist, (cls.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)

        # Define the internal classifier
        classifier = get_image_classifier_pt()

        # Define the internal detector
        conv = nn.Conv2d(1, 16, 5)
        linear = nn.Linear(2304, 1)
        torch.nn.init.xavier_uniform_(conv.weight)
        torch.nn.init.xavier_uniform_(linear.weight)
        model = nn.Sequential(conv, nn.ReLU(), nn.MaxPool2d(2, 2), Flatten(), linear)
        model = Model(model)
        loss_fn = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.01)
        detector = PyTorchClassifier(
            model=model, loss=loss_fn, optimizer=optimizer, input_shape=(1, 28, 28), nb_classes=1, clip_values=(0, 1)
        )

        # Define the detector-classifier
        cls.detector_classifier = DetectorClassifier(classifier=classifier, detector=detector)

        cls.x_train_mnist = np.reshape(cls.x_train_mnist, (cls.x_train_mnist.shape[0], 28, 28, 1)).astype(np.float32)
        cls.x_test_mnist = np.reshape(cls.x_test_mnist, (cls.x_test_mnist.shape[0], 28, 28, 1)).astype(np.float32)
Exemplo n.º 16
0
    def test_4_pytorch(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        ptc = get_image_classifier_pt(from_logits=True)

        x_train = np.reshape(self.x_train_mnist,
                             (self.n_train, 1, 28, 28)).astype(np.float32)

        attack_ap = AdversarialPatch(
            ptc,
            rotation_max=0.5,
            scale_min=0.4,
            scale_max=0.41,
            learning_rate=5.0,
            batch_size=10,
            max_iter=5,
            verbose=False,
        )

        target = np.zeros(self.x_train_mnist.shape[0])
        patch_adv, _ = attack_ap.generate(x_train, target)

        self.assertAlmostEqual(patch_adv[0, 8, 8], 0.6715167, delta=0.05)
        self.assertAlmostEqual(patch_adv[0, 14, 14], 0.6292826, delta=0.05)
        self.assertAlmostEqual(float(np.sum(patch_adv)),
                               424.31439208984375,
                               delta=1.0)
    def test_pytorch_mnist(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        x_train_mnist = np.swapaxes(self.x_train_mnist, 1, 3).astype(np.float32)
        x_test_mnist = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)
        x_test_original = x_test_mnist.copy()

        # Build PyTorchClassifier
        ptc = get_image_classifier_pt()

        # Attack
        up = UniversalPerturbation(ptc, max_iter=1, attacker="newtonfool", attacker_params={"max_iter": 5})
        x_train_mnist_adv = up.generate(x_train_mnist)
        self.assertTrue((up.fooling_rate >= 0.2) or not up.converged)

        x_test_mnist_adv = x_test_mnist + up.noise
        self.assertFalse((x_test_mnist == x_test_mnist_adv).all())

        train_y_pred = np.argmax(ptc.predict(x_train_mnist_adv), axis=1)
        test_y_pred = np.argmax(ptc.predict(x_test_mnist_adv), axis=1)
        self.assertFalse((np.argmax(self.y_test_mnist, axis=1) == test_y_pred).all())
        self.assertFalse((np.argmax(self.y_train_mnist, axis=1) == train_y_pred).all())

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test_mnist))), 0.0, delta=0.00001)
    def test_3_pytorch_classifier(self):
        """
        Second test with the PyTorchClassifier.
        :return:
        """
        self.x_train_mnist = np.reshape(
            self.x_train_mnist,
            (self.x_train_mnist.shape[0], 1, 28, 28)).astype(np.float32)

        # Create the trained classifier
        trained_classifier = get_image_classifier_pt()

        # Create the modified classifier
        transformed_classifier = get_image_classifier_pt(load_init=False)

        # Create defensive distillation transformer
        transformer = DefensiveDistillation(classifier=trained_classifier,
                                            batch_size=BATCH_SIZE,
                                            nb_epochs=NB_EPOCHS)

        # Perform the transformation
        transformed_classifier = transformer(
            x=self.x_train_mnist,
            transformed_classifier=transformed_classifier)

        # Compare the 2 outputs
        preds1 = trained_classifier.predict(x=self.x_train_mnist,
                                            batch_size=BATCH_SIZE)

        preds2 = transformed_classifier.predict(x=self.x_train_mnist,
                                                batch_size=BATCH_SIZE)

        preds1 = np.argmax(preds1, axis=1)
        preds2 = np.argmax(preds2, axis=1)
        acc = np.sum(preds1 == preds2) / len(preds1)

        self.assertGreater(acc, 0.5)

        ce = cross_entropy(preds1, preds2)

        self.assertLess(ce, 10)
        self.assertGreaterEqual(ce, 0)

        self.x_train_mnist = np.reshape(
            self.x_train_mnist,
            (self.x_train_mnist.shape[0], 28, 28, 1)).astype(np.float32)
Exemplo n.º 19
0
 def test_4_pytorch_mnist(self):
     """
     Test with the PyTorchClassifier. (Untargeted Attack)
     :return:
     """
     x_test = np.reshape(self.x_test_mnist, (self.x_test_mnist.shape[0], 1, 28, 28)).astype(np.float32)
     classifier = get_image_classifier_pt()
     self._test_attack(classifier, x_test, self.y_test_mnist, False)
 def test_fit_predict(self):
     classifier = get_image_classifier_pt()
     predictions = classifier.predict(self.x_test_mnist)
     accuracy = np.sum(
         np.argmax(predictions, axis=1) == np.argmax(self.y_test_mnist,
                                                     axis=1)) / self.n_test
     logger.info("Accuracy after fitting: %.2f%%", (accuracy * 100))
     self.assertEqual(accuracy, 0.32)
Exemplo n.º 21
0
    def test_5_pytorch_mnist(self):
        x_train = np.reshape(self.x_train_mnist,
                             (self.x_train_mnist.shape[0], 1, 28, 28)).astype(
                                 np.float32)
        x_test = np.reshape(self.x_test_mnist,
                            (self.x_test_mnist.shape[0], 1, 28, 28)).astype(
                                np.float32)
        x_test_original = x_test.copy()

        # Create basic PyTorch model
        classifier = get_image_classifier_pt(from_logits=True)

        scores = get_labels_np_array(classifier.predict(x_train))
        sum6 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_train_mnist, axis=1))
        accuracy = sum6 / self.y_train_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on training set: %.2f%%",
                    (accuracy * 100))

        scores = get_labels_np_array(classifier.predict(x_test))
        sum7 = np.sum(
            np.argmax(scores, axis=1) == np.argmax(self.y_test_mnist, axis=1))
        accuracy = sum7 / self.y_test_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on test set: %.2f%%",
                    (accuracy * 100))

        attack = DeepFool(classifier, max_iter=5, batch_size=11, verbose=False)
        x_train_adv = attack.generate(x_train)
        x_test_adv = attack.generate(x_test)

        self.assertFalse((x_train == x_train_adv).all())
        self.assertFalse((x_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((self.y_train_mnist == train_y_pred).all())
        self.assertFalse((self.y_test_mnist == test_y_pred).all())

        sum8 = np.sum(
            np.argmax(train_y_pred, axis=1) == np.argmax(self.y_train_mnist,
                                                         axis=1))
        accuracy = sum8 / self.y_train_mnist.shape[0]
        logger.info("Accuracy on adversarial train examples: %.2f%%",
                    (accuracy * 100))

        sum9 = np.sum(
            np.argmax(test_y_pred, axis=1) == np.argmax(self.y_test_mnist,
                                                        axis=1))
        accuracy = sum9 / self.y_test_mnist.shape[0]
        logger.info("Accuracy on adversarial test examples: %.2f%%",
                    (accuracy * 100))

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(np.max(np.abs(x_test_original - x_test))),
                               0.0,
                               delta=0.00001)
    def test_framework_pytorch_mnist(self):
        self.x_train_mnist = np.swapaxes(self.x_train_mnist, 1, 3).astype(np.float32)
        self.x_test_mnist = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)

        classifier = get_image_classifier_pt()
        self._test_framework_vs_numpy(classifier)

        self.x_train_mnist = np.swapaxes(self.x_train_mnist, 1, 3).astype(np.float32)
        self.x_test_mnist = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)
Exemplo n.º 23
0
    def test_check_params(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, targeted="true")

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, regularization=-1)

        with self.assertRaises(TypeError):
            _ = Wasserstein(ptc, p=1.0)
        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, p=-1)

        with self.assertRaises(TypeError):
            _ = Wasserstein(ptc, kernel_size=1.0)
        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, kernel_size=2)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, norm=0)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, ball=0)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, eps=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, eps_step=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, norm="inf", eps=1, eps_step=2)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, eps_iter=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, eps_factor=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, conjugate_sinkhorn_max_iter=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, projected_sinkhorn_max_iter=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, batch_size=-1)

        with self.assertRaises(ValueError):
            _ = Wasserstein(ptc, verbose="true")
Exemplo n.º 24
0
    def _image_dl_estimator(one_classifier=False, functional=False, **kwargs):
        sess = None
        wildcard = False
        classifier_list = None

        if kwargs.get("wildcard") is not None:
            if kwargs.get("wildcard") is True:
                wildcard = True
            del kwargs["wildcard"]

        if framework == "keras":
            if wildcard is False and functional is False:
                if functional:
                    classifier_list = [
                        get_image_classifier_kr_functional(**kwargs)
                    ]
                else:
                    classifier_list = [get_image_classifier_kr(**kwargs)]
        if framework == "tensorflow":
            if wildcard is False and functional is False:
                classifier, sess = get_image_classifier_tf(**kwargs)
                classifier_list = [classifier]
        if framework == "pytorch":
            if wildcard is False and functional is False:
                classifier_list = [get_image_classifier_pt(**kwargs)]
        if framework == "scikitlearn":
            logging.warning(
                "{0} doesn't have an image classifier defined yet".format(
                    framework))
            classifier_list = None
        if framework == "kerastf":
            if wildcard:
                classifier_list = [
                    get_image_classifier_kr_tf_with_wildcard(**kwargs)
                ]
            else:
                if functional:
                    classifier_list = [
                        get_image_classifier_kr_tf_functional(**kwargs)
                    ]
                else:
                    classifier_list = [get_image_classifier_kr_tf(**kwargs)]

        if framework == "mxnet":
            if wildcard is False and functional is False:
                classifier_list = [get_image_classifier_mx_instance(**kwargs)]

        if classifier_list is None:
            return None, None

        if one_classifier:
            return classifier_list[0], sess

        return classifier_list, sess
Exemplo n.º 25
0
    def test_check_params(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = SaliencyMapMethod(ptc, gamma=-1)

        with self.assertRaises(ValueError):
            _ = SaliencyMapMethod(ptc, batch_size=-1)

        with self.assertRaises(ValueError):
            _ = SaliencyMapMethod(ptc, verbose="False")
    def _image_dl_estimator(functional=False, **kwargs):
        sess = None
        wildcard = False
        classifier = None

        if kwargs.get("wildcard") is not None:
            if kwargs.get("wildcard") is True:
                wildcard = True
            del kwargs["wildcard"]

        if framework == "keras":
            if wildcard is False and functional is False:
                if functional:
                    classifier = get_image_classifier_kr_functional(**kwargs)
                else:
                    try:
                        classifier = get_image_classifier_kr(**kwargs)
                    except NotImplementedError:
                        raise ARTTestFixtureNotImplemented(
                            "This combination of loss function options is currently not supported.",
                            image_dl_estimator.__name__,
                            framework,
                        )
        if framework == "tensorflow1" or framework == "tensorflow2":
            if wildcard is False and functional is False:
                classifier, sess = get_image_classifier_tf(**kwargs)
                return classifier, sess
        if framework == "pytorch":
            if not wildcard:
                if functional:
                    classifier = get_image_classifier_pt_functional(**kwargs)
                else:
                    classifier = get_image_classifier_pt(**kwargs)
        if framework == "kerastf":
            if wildcard:
                classifier = get_image_classifier_kr_tf_with_wildcard(**kwargs)
            else:
                if functional:
                    classifier = get_image_classifier_kr_tf_functional(
                        **kwargs)
                else:
                    classifier = get_image_classifier_kr_tf(**kwargs)

        if framework == "mxnet":
            if wildcard is False and functional is False:
                classifier = get_image_classifier_mx_instance(**kwargs)

        if classifier is None:
            raise ARTTestFixtureNotImplemented(
                "no test deep learning estimator available",
                image_dl_estimator.__name__, framework)

        return classifier, sess
Exemplo n.º 27
0
    def test_check_params(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = TargetedUniversalPerturbation(ptc, delta=-1)

        with self.assertRaises(ValueError):
            _ = TargetedUniversalPerturbation(ptc, max_iter=-1)

        with self.assertRaises(ValueError):
            _ = TargetedUniversalPerturbation(ptc, eps=-1)
Exemplo n.º 28
0
    def test_check_params_pt(self):

        ptc = get_image_classifier_pt(from_logits=True)

        with self.assertRaises(ValueError):
            _ = DefensiveDistillation(ptc, batch_size=1.0)
        with self.assertRaises(ValueError):
            _ = DefensiveDistillation(ptc, batch_size=-1)

        with self.assertRaises(ValueError):
            _ = DefensiveDistillation(ptc, nb_epochs=1.0)
        with self.assertRaises(ValueError):
            _ = DefensiveDistillation(ptc, nb_epochs=-1)
Exemplo n.º 29
0
    def test_4_pytorch_mnist(self):
        """
        Third test with the PyTorchClassifier.
        :return:
        """
        # Build PyTorchClassifier
        ptc = get_image_classifier_pt()

        # Get MNIST
        x_test_mnist = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)
        x_test_original = x_test_mnist.copy()

        # First attack
        # zoo = ZooAttack(classifier=ptc, targeted=True, max_iter=10, binary_search_steps=10, verbose=False)
        # params = {'y': random_targets(self.y_test, ptc.nb_classes)}
        # x_test_adv = zoo.generate(x_test, **params)
        # self.assertFalse((x_test == x_test_adv).all())
        # self.assertLessEqual(np.amax(x_test_adv), 1.0)
        # self.assertGreaterEqual(np.amin(x_test_adv), 0.0)
        # target = np.argmax(params['y'], axis=1)
        # y_pred_adv = np.argmax(ptc.predict(x_test_adv), axis=1)
        # logger.debug('ZOO target: %s', target)
        # logger.debug('ZOO actual: %s', y_pred_adv)
        # logger.info('ZOO success rate on MNIST: %.2f', (sum(target != y_pred_adv) / float(len(target))))

        # Second attack
        zoo = ZooAttack(
            classifier=ptc,
            targeted=False,
            learning_rate=1e-2,
            max_iter=10,
            binary_search_steps=3,
            abort_early=False,
            use_resize=False,
            use_importance=False,
            verbose=False,
        )
        x_test_mnist_adv = zoo.generate(x_test_mnist)
        self.assertLessEqual(np.amax(x_test_mnist_adv), 1.0)
        self.assertGreaterEqual(np.amin(x_test_mnist_adv), 0.0)

        # print(x_test[0, 0, 14, :])
        # print(x_test_adv[0, 0, 14, :])
        # print(np.amax(x_test - x_test_adv))
        # x_test_adv_expected = []

        # Check that x_test has not been modified by attack and classifier
        self.assertAlmostEqual(float(
            np.max(np.abs(x_test_original - x_test_mnist))),
                               0.0,
                               delta=0.00001)
    def test_pytorch_mnist(self):
        classifier = get_image_classifier_pt()
        x_train = np.swapaxes(self.x_train_mnist, 1, 3).astype(np.float32)
        x_test = np.swapaxes(self.x_test_mnist, 1, 3).astype(np.float32)

        scores = get_labels_np_array(classifier.predict(x_train))
        acc = np.sum(np.argmax(scores, axis=1) == np.argmax(self.y_train_mnist, axis=1)) / self.y_train_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on training set: %.2f%%", (acc * 100))

        scores = get_labels_np_array(classifier.predict(x_test))
        acc = np.sum(np.argmax(scores, axis=1) == np.argmax(self.y_test_mnist, axis=1)) / self.y_test_mnist.shape[0]
        logger.info("[PyTorch, MNIST] Accuracy on test set: %.2f%%", (acc * 100))

        self._test_backend_mnist(classifier, x_train, self.y_train_mnist, x_test, self.y_test_mnist)