def test_fit_pca(fn):
    dates = generate_random_dates(4)
    assets = get_assets(3)

    fn_inputs = {
        'returns':
        pd.DataFrame([[0.02769242, 1.34872387, 0.23460972],
                      [-0.94728692, 0.68386883, -1.23987235],
                      [1.93769376, -0.48275934, 0.34957348],
                      [0.23985234, 0.35897345, 0.34598734]], dates, assets),
        'num_factor_exposures':
        2,
        'svd_solver':
        'full'
    }
    fn_correct_values = {
        'PCA':
        PCA(),
        'PCA.components_':
        np.array([[0.81925896, -0.40427891, 0.40666118],
                  [-0.02011128, 0.68848693, 0.72496985]])
    }

    pca_fit = PCA.fit
    with patch.object(PCA, 'fit', autospec=True) as mock_fit:
        mock_fit.side_effect = pca_fit

        fn_return_value = fn(**fn_inputs)

        assert_structure(fn_return_value, fn_correct_values['PCA'], 'PCA')

        try:
            # print(dir(fn_return_value.fit))
            fn_return_value.fit.assert_called()
            # old python:
            # fn_return_value.fit.assert_any_call()

        except AssertionError:
            raise Exception('Test Failure: PCA.fit not called')

        try:
            fn_return_value.fit.assert_called_with(self=fn_return_value,
                                                   X=fn_inputs['returns'])
        except Exception:
            raise Exception(
                'Test Failure: PCA.fit called with the wrong arguments')

        assert_structure(fn_return_value.components_,
                         fn_correct_values['PCA.components_'],
                         'PCA.components_')

        if not does_data_match(fn_return_value.components_,
                               fn_correct_values['PCA.components_']):
            raise Exception('Test Failure: PCA not fitted correctly\n\n'
                            'PCA.components_:\n'
                            '{}\n\n'
                            'Expected PCA.components_:\n'
                            '{}'.format(fn_return_value.components_,
                                        fn_correct_values['PCA.components_']))
def test_fit_pca(fn):
    dates = generate_random_dates(4)
    assets = get_assets(3)

    fn_inputs = {
        'returns': pd.DataFrame(
            [
                [0.02769242, 1.34872387, 0.23460972],
                [-0.94728692, 0.68386883, -1.23987235],
                [1.93769376, -0.48275934, 0.34957348],
                [0.23985234, 0.35897345, 0.34598734]],
            dates, assets),
        'num_factor_exposures': 2,
        'svd_solver': 'full'}
    fn_correct_values = {
        'PCA': PCA(),
        'PCA.components_': np.array([
            [0.81925896, -0.40427891, 0.40666118],
            [-0.02011128, 0.68848693, 0.72496985]])}

    pca_fit = PCA.fit
    with patch.object(PCA, 'fit', autospec=True) as mock_fit:
        mock_fit.side_effect = pca_fit

        fn_return_value = fn(**fn_inputs)

        assert_structure(fn_return_value, fn_correct_values['PCA'], 'PCA')

        try:
            fn_return_value.fit.assert_called()
        except AssertionError:
            raise Exception('Test Failure: PCA.fit not called')

        try:
            fn_return_value.fit.assert_called_with(self=fn_return_value, X=fn_inputs['returns'])
        except Exception:
            raise Exception('Test Failure: PCA.fit called with the wrong arguments')

        assert_structure(fn_return_value.components_, fn_correct_values['PCA.components_'], 'PCA.components_')

        if not does_data_match(fn_return_value.components_, fn_correct_values['PCA.components_']):
            raise Exception('Test Failure: PCA not fitted correctly\n\n'
                            'PCA.components_:\n'
                            '{}\n\n'
                            'Expected PCA.components_:\n'
                            '{}'.format(fn_return_value.components_, fn_correct_values['PCA.components_']))
Exemplo n.º 3
0
def test_fit_pca(fn):
    dates = generate_random_dates(4)
    assets = get_assets(3)

    fn_inputs = {
        "returns":
        pd.DataFrame(
            [
                [0.02769242, 1.34872387, 0.23460972],
                [-0.94728692, 0.68386883, -1.23987235],
                [1.93769376, -0.48275934, 0.34957348],
                [0.23985234, 0.35897345, 0.34598734],
            ],
            dates,
            assets,
        ),
        "num_factor_exposures":
        2,
        "svd_solver":
        "full",
    }
    fn_correct_values = {
        "PCA":
        PCA(),
        "PCA.components_":
        np.array([
            [0.81925896, -0.40427891, 0.40666118],
            [-0.02011128, 0.68848693, 0.72496985],
        ]),
    }

    pca_fit = PCA.fit
    with patch.object(PCA, "fit", autospec=True) as mock_fit:
        mock_fit.side_effect = pca_fit

        fn_return_value = fn(**fn_inputs)

        assert_structure(fn_return_value, fn_correct_values["PCA"], "PCA")

        try:
            fn_return_value.fit.assert_called()
        except AssertionError:
            raise Exception("Test Failure: PCA.fit not called")

        try:
            fn_return_value.fit.assert_called_with(self=fn_return_value,
                                                   X=fn_inputs["returns"])
        except Exception:
            raise Exception(
                "Test Failure: PCA.fit called with the wrong arguments")

        assert_structure(
            fn_return_value.components_,
            fn_correct_values["PCA.components_"],
            "PCA.components_",
        )

        if not does_data_match(fn_return_value.components_,
                               fn_correct_values["PCA.components_"]):
            raise Exception("Test Failure: PCA not fitted correctly\n\n"
                            "PCA.components_:\n"
                            "{}\n\n"
                            "Expected PCA.components_:\n"
                            "{}".format(fn_return_value.components_,
                                        fn_correct_values["PCA.components_"]))