Exemplo n.º 1
0
    def test_switch_leader(self):
        producer = Producer(self.client)
        topic = self.topic
        try:
            for index in range(1, 3):
                # cause the client to establish connections to all the brokers
                log.debug("Pass: %d. Sending 10 random messages", index)
                yield self._send_random_messages(producer, topic, 10)

                # Ensure that the follower is in sync
                log.debug("Ensuring topic/partition is replicated.")
                part_meta = self.client.partition_meta[TopicAndPartition(
                    self.topic, 0)]
                # Ensure the all the replicas are in-sync before proceeding
                while len(part_meta.isr) != 2:  # pragma: no cover
                    log.debug("Waiting for Kafka replica to become synced")
                    if len(part_meta.replicas) != 2:
                        log.error(
                            "Kafka replica 'disappeared'!"
                            "Partitition Meta: %r", part_meta)
                    yield async_delay(1.0)
                    yield self.client.load_metadata_for_topics(self.topic)
                    part_meta = self.client.partition_meta[TopicAndPartition(
                        self.topic, 0)]

                # kill leader for partition 0
                log.debug("Killing leader of partition 0")
                broker, kill_time = self._kill_leader(topic, 0)

                log.debug("Sending 1 more message: 'part 1'")
                yield producer.send_messages(topic, msgs=['part 1'])
                log.debug("Sending 1 more message: 'part 2'")
                yield producer.send_messages(topic, msgs=['part 2'])

                # send to new leader
                log.debug("Sending 10 more messages")
                yield self._send_random_messages(producer, topic, 10)

                # Make sure the ZK ephemeral time (~6 seconds) has elapsed
                wait_time = (kill_time + 6.5) - time.time()
                if wait_time > 0:
                    log.debug("Waiting: %4.2f for ZK timeout", wait_time)
                    yield async_delay(wait_time)
                # restart the kafka broker
                log.debug("Restarting the broker")
                broker.restart()

                # count number of messages
                log.debug("Getting message count")
                count = yield self._count_messages(topic)
                self.assertEqual(count, 22 * index)
        finally:
            log.debug("Stopping the producer")
            yield producer.stop()
            log.debug("Producer stopped")

        log.debug("Test complete.")
    def test_switch_leader(self):
        producer = Producer(self.client)
        topic = self.topic
        try:
            for index in range(1, 3):
                # cause the client to establish connections to all the brokers
                log.debug("Pass: %d. Sending 10 random messages", index)
                yield self._send_random_messages(producer, topic, 10)

                # Ensure that the follower is in sync
                log.debug("Ensuring topic/partition is replicated.")
                part_meta = self.client.partition_meta[TopicAndPartition(
                    self.topic, 0)]
                # Ensure the all the replicas are in-sync before proceeding
                while len(part_meta.isr) != 2:  # pragma: no cover
                    log.debug("Waiting for Kafka replica to become synced")
                    if len(part_meta.replicas) != 2:
                        log.error("Kafka replica 'disappeared'!"
                                  "Partitition Meta: %r", part_meta)
                    yield async_delay(1.0)
                    yield self.client.load_metadata_for_topics(self.topic)
                    part_meta = self.client.partition_meta[TopicAndPartition(
                        self.topic, 0)]

                # kill leader for partition 0
                log.debug("Killing leader of partition 0")
                broker, kill_time = self._kill_leader(topic, 0)

                log.debug("Sending 1 more message: 'part 1'")
                yield producer.send_messages(topic, msgs=['part 1'])
                log.debug("Sending 1 more message: 'part 2'")
                yield producer.send_messages(topic, msgs=['part 2'])

                # send to new leader
                log.debug("Sending 10 more messages")
                yield self._send_random_messages(producer, topic, 10)

                # Make sure the ZK ephemeral time (~6 seconds) has elapsed
                wait_time = (kill_time + 6.5) - time.time()
                if wait_time > 0:
                    log.debug("Waiting: %4.2f for ZK timeout", wait_time)
                    yield async_delay(wait_time)
                # restart the kafka broker
                log.debug("Restarting the broker")
                broker.restart()

                # count number of messages
                log.debug("Getting message count")
                count = yield self._count_messages(topic)
                self.assertEqual(count, 22 * index)
        finally:
            log.debug("Stopping the producer")
            yield producer.stop()
            log.debug("Producer stopped")

        log.debug("Test complete.")
Exemplo n.º 3
0
    def test_consumer_commit_offsets(self):
        # Start off by sending messages before the consumer is started
        yield self.send_messages(self.partition, range(0, 100))

        # Create a consumer, allow commit, disable auto-commit
        consumer = self.consumer(consumer_group=self.id(),
                                 auto_commit_every_n=0,
                                 auto_commit_every_ms=0)

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        yield self.send_messages(self.partition, range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Stop the consumer
        consumer.stop()
        self.successResultOf(start_d)
        # Commit the offsets
        yield consumer.commit()

        # Send some more messages
        last_batch = yield self.send_messages(self.partition, range(200, 300))

        # Create another consumer
        consumer2 = self.consumer(consumer_group=self.id(),
                                  auto_commit_every_n=0,
                                  auto_commit_every_ms=0)
        # Start it at the last offset for the group
        start_d2 = consumer2.start(OFFSET_COMMITTED)
        # Loop waiting for all the messages to show up
        while len(consumer2.processor._messages) < 100:
            # Wait a bit for them to arrive
            yield async_delay()
        # Make sure we got all 100, and the right 100
        self.assertEqual(len(consumer2.processor._messages), 100)
        self.assertEqual(
            last_batch,
            [x.message.value for x in consumer2.processor._messages])

        # Stop the consumer
        consumer2.stop()
        self.successResultOf(start_d2)
    def test_consumer_commit_offsets(self):
        # Start off by sending messages before the consumer is started
        yield self.send_messages(self.partition, range(0, 100))

        # Create a consumer, allow commit, disable auto-commit
        consumer = self.consumer(consumer_group=self.id(),
                                 auto_commit_every_n=0,
                                 auto_commit_every_ms=0)

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        yield self.send_messages(self.partition, range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Stop the consumer
        consumer.stop()
        self.successResultOf(start_d)
        # Commit the offsets
        yield consumer.commit()

        # Send some more messages
        last_batch = yield self.send_messages(self.partition, range(200, 300))

        # Create another consumer
        consumer2 = self.consumer(consumer_group=self.id(),
                                  auto_commit_every_n=0,
                                  auto_commit_every_ms=0)
        # Start it at the last offset for the group
        start_d2 = consumer2.start(OFFSET_COMMITTED)
        # Loop waiting for all the messages to show up
        while len(consumer2.processor._messages) < 100:
            # Wait a bit for them to arrive
            yield async_delay()
        # Make sure we got all 100, and the right 100
        self.assertEqual(len(consumer2.processor._messages), 100)
        self.assertEqual(last_batch, [x.message.value for x in
                                      consumer2.processor._messages])

        # Stop the consumer
        consumer2.stop()
        self.successResultOf(start_d2)
    def test_consumer_restart(self):
        sent_messages = yield self.send_messages(self.partition, range(0, 100))

        # Create & start our default consumer (auto-commit)
        consumer = self.consumer()

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        sent_messages += yield self.send_messages(
            self.partition, range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Stop the consumer and record offset at which to restart (next after
        # last processed message offset)
        offset = consumer.stop() + 1
        self.successResultOf(start_d)

        # Send some more messages
        sent_messages += yield self.send_messages(
            self.partition, range(200, 250))
        # Restart the consumer at the returned offset
        start_d2 = consumer.start(offset)
        # Loop waiting for the new message
        while len(consumer.processor._messages) < 250:
            # Wait a bit for them to arrive
            yield async_delay()

        # make sure we got them all
        self.assert_message_count(consumer.processor._messages, 250)
        expected_messages = set(sent_messages)
        actual_messages = set([x.message.value for x in
                               consumer.processor._messages])
        self.assertEqual(expected_messages, actual_messages)

        # Clean up
        consumer.stop()
        self.successResultOf(start_d2)
Exemplo n.º 6
0
    def test_consumer_restart(self):
        sent_messages = yield self.send_messages(self.partition, range(0, 100))

        # Create & start our default consumer (auto-commit)
        consumer = self.consumer()

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        sent_messages += yield self.send_messages(self.partition,
                                                  range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Stop the consumer and record offset at which to restart (next after
        # last processed message offset)
        offset = consumer.stop() + 1
        self.successResultOf(start_d)

        # Send some more messages
        sent_messages += yield self.send_messages(self.partition,
                                                  range(200, 250))
        # Restart the consumer at the returned offset
        start_d2 = consumer.start(offset)
        # Loop waiting for the new message
        while len(consumer.processor._messages) < 250:
            # Wait a bit for them to arrive
            yield async_delay()

        # make sure we got them all
        self.assert_message_count(consumer.processor._messages, 250)
        expected_messages = set(sent_messages)
        actual_messages = set(
            [x.message.value for x in consumer.processor._messages])
        self.assertEqual(expected_messages, actual_messages)

        # Clean up
        consumer.stop()
        self.successResultOf(start_d2)
    def test_huge_messages(self):
        # Produce 10 "normal" size messages
        yield self.send_messages(0, [str(x) for x in range(10)])

        # Setup a max buffer size for the consumer, and put a message in
        # Kafka that's bigger than that
        MAX_FETCH_BUFFER_SIZE_BYTES = (256 * 1024) - 10
        huge_message, = yield self.send_messages(
            0, [random_string(MAX_FETCH_BUFFER_SIZE_BYTES + 10)])

        # Create a consumer with the (smallish) max buffer size
        consumer = self.consumer(max_buffer_size=MAX_FETCH_BUFFER_SIZE_BYTES)

        # This consumer fails to get the message, and errbacks the start
        # deferred
        d = consumer.start(OFFSET_EARLIEST)

        # Loop waiting for the errback to be called
        while not d.called:
            # Wait a bit for them to arrive
            yield async_delay()
        # Make sure the failure is as expected
        self.failureResultOf(d, ConsumerFetchSizeTooSmall)

        # Make sure the smaller, earlier messages were delivered
        self.assert_message_count(consumer.processor._messages, 10)

        # last offset seen
        last_offset = consumer.processor._messages[-1].offset

        # Stop the consumer: d already errbacked, but stop still must be called
        consumer.stop()

        # Create a consumer with no fetch size limit
        big_consumer = self.consumer()
        # Start just past the last message processed
        d = big_consumer.start(last_offset + 1)
        # Consume giant message successfully
        while not big_consumer.processor._messages:
            # Wait a bit for it to arrive
            yield async_delay()

        self.assertEqual(big_consumer.processor._messages[0].message.value,
                         huge_message)

        # Clean up
        big_consumer.stop()
        self.successResultOf(d)
Exemplo n.º 8
0
    def test_huge_messages(self):
        # Produce 10 "normal" size messages
        yield self.send_messages(0, [str(x) for x in range(10)])

        # Setup a max buffer size for the consumer, and put a message in
        # Kafka that's bigger than that
        MAX_FETCH_BUFFER_SIZE_BYTES = (256 * 1024) - 10
        huge_message, = yield self.send_messages(
            0, [random_string(MAX_FETCH_BUFFER_SIZE_BYTES + 10)])

        # Create a consumer with the (smallish) max buffer size
        consumer = self.consumer(max_buffer_size=MAX_FETCH_BUFFER_SIZE_BYTES)

        # This consumer fails to get the message, and errbacks the start
        # deferred
        d = consumer.start(OFFSET_EARLIEST)

        # Loop waiting for the errback to be called
        while not d.called:
            # Wait a bit for them to arrive
            yield async_delay()
        # Make sure the failure is as expected
        self.failureResultOf(d, ConsumerFetchSizeTooSmall)

        # Make sure the smaller, earlier messages were delivered
        self.assert_message_count(consumer.processor._messages, 10)

        # last offset seen
        last_offset = consumer.processor._messages[-1].offset

        # Stop the consumer: d already errbacked, but stop still must be called
        consumer.stop()

        # Create a consumer with no fetch size limit
        big_consumer = self.consumer()
        # Start just past the last message processed
        d = big_consumer.start(last_offset + 1)
        # Consume giant message successfully
        while not big_consumer.processor._messages:
            # Wait a bit for it to arrive
            yield async_delay()

        self.assertEqual(big_consumer.processor._messages[0].message.value,
                         huge_message)

        # Clean up
        big_consumer.stop()
        self.successResultOf(d)
    def test_large_messages(self):
        # Produce 10 "normal" size messages
        small_messages = yield self.send_messages(
            0, [str(x) for x in range(10)])

        # Produce 10 messages that are large (bigger than default fetch size)
        large_messages = yield self.send_messages(
          0, [random_string(FETCH_BUFFER_SIZE_BYTES * 3) for x in range(10)])

        # Consumer should still get all of them
        consumer = self.consumer()

        # Start the consumer from the beginning
        d = consumer.start(OFFSET_EARLIEST)

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 20:
            # Wait a bit for them to arrive
            yield async_delay()

        expected_messages = set(small_messages + large_messages)
        actual_messages = set([x.message.value for x in
                               consumer.processor._messages])
        self.assertEqual(expected_messages, actual_messages)

        # Clean up
        consumer.stop()
        self.successResultOf(d)
Exemplo n.º 10
0
    def test_large_messages(self):
        # Produce 10 "normal" size messages
        small_messages = yield self.send_messages(0,
                                                  [str(x) for x in range(10)])

        # Produce 10 messages that are large (bigger than default fetch size)
        large_messages = yield self.send_messages(
            0, [random_string(FETCH_BUFFER_SIZE_BYTES * 3) for x in range(10)])

        # Consumer should still get all of them
        consumer = self.consumer()

        # Start the consumer from the beginning
        d = consumer.start(OFFSET_EARLIEST)

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 20:
            # Wait a bit for them to arrive
            yield async_delay()

        expected_messages = set(small_messages + large_messages)
        actual_messages = set(
            [x.message.value for x in consumer.processor._messages])
        self.assertEqual(expected_messages, actual_messages)

        # Clean up
        consumer.stop()
        self.successResultOf(d)
Exemplo n.º 11
0
    def test_consumer(self):
        yield async_delay(3)  # 0.8.1.1 fails otherwise

        yield self.send_messages(self.partition, range(0, 100))

        # Create a consumer.
        consumer = self.consumer()

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        yield self.send_messages(self.partition, range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Send some more messages
        yield self.send_messages(self.partition, range(200, 250))
        # Loop waiting for the new message
        while len(consumer.processor._messages) < 250:
            # Wait a bit for them to arrive
            yield async_delay()

        # make sure we got them all
        self.assert_message_count(consumer.processor._messages, 250)

        # Clean up
        consumer.stop()
        self.successResultOf(start_d)
Exemplo n.º 12
0
    def test_consumer(self):
        yield self.send_messages(self.partition, range(0, 100))

        # Create a consumer.
        consumer = self.consumer()

        # Check for messages on the processor
        self.assertFalse(consumer.processor._messages)

        # Start the consumer from the beginning
        start_d = consumer.start(OFFSET_EARLIEST)

        # Send some more messages
        yield self.send_messages(self.partition, range(100, 200))

        # Loop waiting for all the messages to show up
        while len(consumer.processor._messages) < 200:
            # Wait a bit for them to arrive
            yield async_delay()

        # Make sure we got all 200
        self.assertEqual(len(consumer.processor._messages), 200)

        # Send some more messages
        yield self.send_messages(self.partition, range(200, 250))
        # Loop waiting for the new message
        while len(consumer.processor._messages) < 250:
            # Wait a bit for them to arrive
            yield async_delay()

        # make sure we got them all
        self.assert_message_count(consumer.processor._messages, 250)

        # Clean up
        consumer.stop()
        self.successResultOf(start_d)
    def test_producer_batched_gzipped_hashed_partitioner(self):
        start_offset0 = yield self.current_offset(self.topic, 0)
        start_offset1 = yield self.current_offset(self.topic, 1)
        offsets = (start_offset0, start_offset1)

        requests = []
        msgs_by_partition = ([], [])
        keys_by_partition = ([], [])

        partitioner = HashedPartitioner(self.topic, [0, 1])
        producer = Producer(self.client,
                            codec=CODEC_GZIP,
                            batch_send=True,
                            batch_every_n=100,
                            batch_every_t=None,
                            partitioner_class=HashedPartitioner)

        # Send ten groups of messages, each with a different key
        for i in range(10):
            msg_group = []
            key = 'Key: {}'.format(i)
            part = partitioner.partition(key, [0, 1])
            for j in range(10):
                msg = self.msg('Group:{} Msg:{}'.format(i, j))
                msg_group.append(msg)
                msgs_by_partition[part].append(msg)
                keys_by_partition[part].append(key)
            request = producer.send_messages(self.topic,
                                             key=key,
                                             msgs=msg_group)
            requests.append(request)
            yield async_delay(.5)  # Make the NoResult test have teeth...
            if i < 9:
                # This is to ensure we really are batching all the requests
                self.assertNoResult(request)

        # Now ensure we can retrieve the right messages from each partition
        for part in [0, 1]:
            yield self.assert_fetch_offset(part,
                                           offsets[part],
                                           msgs_by_partition[part],
                                           keys_by_partition[part],
                                           fetch_size=20480)

        yield producer.stop()
Exemplo n.º 14
0
    def test_producer_batched_gzipped_hashed_partitioner(self):
        start_offset0 = yield self.current_offset(self.topic, 0)
        start_offset1 = yield self.current_offset(self.topic, 1)
        offsets = (start_offset0, start_offset1)

        requests = []
        msgs_by_partition = ([], [])
        keys_by_partition = ([], [])

        partitioner = HashedPartitioner(self.topic, [0, 1])
        producer = Producer(
            self.client, codec=CODEC_GZIP, batch_send=True, batch_every_n=100,
            batch_every_t=None, partitioner_class=HashedPartitioner)

        # Send ten groups of messages, each with a different key
        for i in range(10):
            msg_group = []
            key = 'Key: {}'.format(i)
            part = partitioner.partition(key, [0, 1])
            for j in range(10):
                msg = self.msg('Group:{} Msg:{}'.format(i, j))
                msg_group.append(msg)
                msgs_by_partition[part].append(msg)
                keys_by_partition[part].append(key)
            request = producer.send_messages(
                self.topic, key=key, msgs=msg_group)
            requests.append(request)
            yield async_delay(.5)  # Make the NoResult test have teeth...
            if i < 9:
                # This is to ensure we really are batching all the requests
                self.assertNoResult(request)

        # Now ensure we can retrieve the right messages from each partition
        for part in [0, 1]:
            yield self.assert_fetch_offset(
                part, offsets[part], msgs_by_partition[part],
                keys_by_partition[part], fetch_size=20480)

        yield producer.stop()
    def test_throughput(self):
        yield async_delay(3)  # 0.8.1.1 fails otherwise

        # Flag to shutdown
        keep_running = True
        # Count of messages sent
        sent_msgs_count = [0]
        total_messages_size = [0]
        # setup MESSAGE_BLOCK_SIZEx1024-ish byte messages to send over and over
        constant_messages = [
            self.msg(s)
            for s in [random_string(1024) for x in range(MESSAGE_BLOCK_SIZE)]
        ]
        large_messages = [
            self.msg(s) for s in [
                random_string(FETCH_BUFFER_SIZE_BYTES * 3)
                for x in range(MESSAGE_BLOCK_SIZE)
            ]
        ]

        constant_messages_size = len(constant_messages[0]) * MESSAGE_BLOCK_SIZE
        large_messages_size = len(large_messages[0]) * MESSAGE_BLOCK_SIZE

        # Create a producer and send some messages
        producer = Producer(self.client)

        # Create consumers (1/partition)
        consumers = [
            self.consumer(partition=p, fetch_max_wait_time=50)
            for p in range(PARTITION_COUNT)
        ]

        def log_error(failure):
            log.exception("Failure sending messages: %r",
                          failure)  # pragma: no cover

        def sent_msgs(resps):
            log.info("Messages Sent: %r", resps)
            sent_msgs_count[0] += MESSAGE_BLOCK_SIZE
            return resps

        def send_msgs():
            # randomly, 1/20 of the time, send large messages
            if randint(0, 19):
                ## if True:
                messages = constant_messages
                large = ''
                total_messages_size[0] += constant_messages_size
            else:
                messages = large_messages
                large = ' large'
                total_messages_size[0] += large_messages_size

            log.info("Sending: %d%s messages", len(messages), large)
            d = producer.send_messages(self.topic, msgs=messages)
            # As soon as we get a response from the broker, count them
            # and if we're still supposed to, send more
            d.addCallback(sent_msgs)
            if keep_running:
                d.addCallback(lambda _: self.reactor.callLater(0, send_msgs))
                ## d.addCallback(lambda _: send_msgs())
            d.addErrback(log_error)

        # Start sending messages, MESSAGE_BLOCK_SIZE at a time, 1K or 384K each
        send_msgs()

        # Start the consumers from the beginning
        fetch_start = time.time()
        start_ds = [consumer.start(OFFSET_EARLIEST) for consumer in consumers]

        # Let them all run for awhile...
        log.info("Waiting %d seconds...", PRODUCE_TIME)
        yield async_delay(PRODUCE_TIME)
        # Tell the producer to stop
        keep_running = False
        # Wait up to PRODUCE_TIME for the consumers to catch up
        log.info(
            "Waiting up to %d seconds for "
            "consumers to finish consuming...", PRODUCE_TIME)
        deadline = time.time() + PRODUCE_TIME * 2
        while time.time() < deadline:
            consumed = sum(
                [len(consumer.processor._messages) for consumer in consumers])
            log.debug("Consumed %d messages.", consumed)
            if sent_msgs_count[0] == consumed:
                break
            yield async_delay(1)
        fetch_time = time.time() - fetch_start
        consumed_bytes = sum(
            [c.processor._messages_bytes[0] for c in consumers])

        result_msg = ("Sent: {} messages ({:,} total bytes) in ~{} seconds"
                      " ({}/sec), Consumed: {} in {:.2f} seconds.".format(
                          sent_msgs_count[0], total_messages_size[0],
                          PRODUCE_TIME, sent_msgs_count[0] / PRODUCE_TIME,
                          consumed, fetch_time))
        # Log the result, and print to stderr to get around nose capture
        log.info(result_msg)
        print("\n\t Performance Data: " + result_msg, file=sys.stderr)
        # And print data as stats
        stat('Production_Time', PRODUCE_TIME)
        stat('Consumption_Time', fetch_time)
        stat('Messages_Produced', sent_msgs_count[0])
        stat('Messages_Consumed', consumed)
        stat('Messages_Bytes_Produced', total_messages_size[0])
        stat('Messages_Bytes_Consumed', consumed_bytes)
        stat('Messages_Produced_Per_Second', sent_msgs_count[0] / PRODUCE_TIME)
        stat('Messages_Consumed_Per_Second', consumed / fetch_time)
        stat('Message_Bytes_Produced_Per_Second',
             total_messages_size[0] / PRODUCE_TIME)
        stat('Message_Bytes_Consumed_Per_Second', consumed_bytes / fetch_time)

        # Clean up
        log.debug('Stopping producer: %r', producer)
        yield producer.stop()
        log.debug('Stopping consumers: %r', consumers)
        for consumer in consumers:
            consumer.stop()
        [self.successResultOf(start_d) for start_d in start_ds]
        # make sure we got all the messages we sent
        self.assertEqual(
            sent_msgs_count[0],
            sum([len(consumer.processor._messages) for consumer in consumers]))