Exemplo n.º 1
0
        def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
            """The `model_fn` for TPUEstimator."""

            unique_ids = features["unique_ids"]
            input_ids = features["input_ids"]
            input_mask = features["input_mask"]
            input_type_ids = features["input_type_ids"]

            jit_scope = tf.contrib.compiler.jit.experimental_jit_scope

            with jit_scope():
                model = modeling.BertModel(config=bert_config,
                                           is_training=False,
                                           input_ids=input_ids,
                                           input_mask=input_mask,
                                           token_type_ids=input_type_ids)

                if mode != tf.estimator.ModeKeys.PREDICT:
                    raise ValueError("Only PREDICT modes are supported: %s" %
                                     (mode))

                tvars = tf.trainable_variables()

                (assignment_map, initialized_variable_names
                 ) = modeling.get_assignment_map_from_checkpoint(
                     tvars, init_checkpoint)

                tf.logging.info("**** Trainable Variables ****")
                for var in tvars:
                    init_string = ""
                    if var.name in initialized_variable_names:
                        init_string = ", *INIT_FROM_CKPT*"
                    tf.logging.info("  name = %s, shape = %s%s", var.name,
                                    var.shape, init_string)

                all_layers = model.get_all_encoder_layers()

                predictions = {
                    "unique_id": unique_ids,
                }

                for (i, layer_index) in enumerate(layer_indexes):
                    predictions["layer_output_%d" %
                                i] = all_layers[layer_index]

                from tensorflow.python.estimator.model_fn import EstimatorSpec

                output_spec = EstimatorSpec(mode=mode, predictions=predictions)
                return output_spec
Exemplo n.º 2
0
        def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
            from tensorflow.python.estimator.model_fn import EstimatorSpec

            tf.logging.info("*** Features ***")
            for name in sorted(features.keys()):
                tf.logging.info("  name = %s, shape = %s" %
                                (name, features[name].shape))

            input_ids = features["input_ids"]
            input_mask = features["input_mask"]
            segment_ids = features["segment_ids"]
            label_ids = features["label_ids"]

            is_training = (mode == tf.estimator.ModeKeys.TRAIN)

            (total_loss, per_example_loss, logits,
             probabilities) = self.create_model(bert_config, is_training,
                                                input_ids, input_mask,
                                                segment_ids, label_ids,
                                                num_labels,
                                                use_one_hot_embeddings)

            tvars = tf.trainable_variables()
            initialized_variable_names = {}

            if init_checkpoint:
                (assignment_map, initialized_variable_names) \
                    = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

            tf.logging.info("**** Trainable Variables ****")
            for var in tvars:
                init_string = ""
                if var.name in initialized_variable_names:
                    init_string = ", *INIT_FROM_CKPT*"
                tf.logging.info("  name = %s, shape = %s%s", var.name,
                                var.shape, init_string)

            if mode == tf.estimator.ModeKeys.TRAIN:

                train_op = optimization.create_optimizer(
                    total_loss, learning_rate, num_train_steps,
                    num_warmup_steps, False)

                output_spec = EstimatorSpec(mode=mode,
                                            loss=total_loss,
                                            train_op=train_op)
            elif mode == tf.estimator.ModeKeys.EVAL:

                def metric_fn(per_example_loss, label_ids, logits):
                    predictions = tf.argmax(logits,
                                            axis=-1,
                                            output_type=tf.int32)
                    accuracy = tf.metrics.accuracy(label_ids, predictions)
                    auc = tf.metrics.auc(label_ids, predictions)
                    loss = tf.metrics.mean(per_example_loss)
                    return {
                        "eval_accuracy": accuracy,
                        "eval_auc": auc,
                        "eval_loss": loss,
                    }

                eval_metrics = metric_fn(per_example_loss, label_ids, logits)
                output_spec = EstimatorSpec(mode=mode,
                                            loss=total_loss,
                                            eval_metric_ops=eval_metrics)
            else:
                output_spec = EstimatorSpec(mode=mode,
                                            predictions=probabilities)

            return output_spec