Exemplo n.º 1
0
    def __init__(self, config, dataset):
        super(HRED, self).__init__(config, dataset)
        # # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.rnn_type = config['rnn_type']
        self.bidirectional = config['bidirectional']
        self.num_directions = 2 if self.bidirectional else 1
        self.dropout_ratio = config['dropout_ratio']
        self.strategy = config['decoding_strategy']
        self.attention_type = config['attention_type']
        self.alignment_method = config['alignment_method']

        if (self.strategy
                not in ['topk_sampling', 'greedy_search', 'beam_search']):
            raise NotImplementedError(
                "{} decoding strategy not implemented".format(self.strategy))
        if (self.strategy == 'beam_search'):
            self.beam_size = config['beam_size']

        self.context_size = self.hidden_size * self.num_directions
        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx

        # define layers and loss
        self.token_embedder = nn.Embedding(self.vocab_size,
                                           self.embedding_size,
                                           padding_idx=self.padding_token_idx)

        self.utterance_encoder = BasicRNNEncoder(
            self.embedding_size, self.hidden_size, self.num_enc_layers,
            self.rnn_type, self.dropout_ratio, self.bidirectional)

        self.context_encoder = BasicRNNEncoder(
            self.hidden_size * 2, self.hidden_size, self.num_enc_layers,
            self.rnn_type, self.dropout_ratio, self.bidirectional)

        if self.attention_type is not None:
            self.decoder = AttentionalRNNDecoder(
                self.embedding_size + self.hidden_size, self.hidden_size,
                self.context_size, self.num_dec_layers, self.rnn_type,
                self.dropout_ratio, self.attention_type, self.alignment_method)
        else:
            self.decoder = BasicRNNDecoder(
                self.embedding_size + self.hidden_size, self.hidden_size,
                self.num_dec_layers, self.rnn_type, self.dropout_ratio)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(self.hidden_size, self.vocab_size)
        self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_token_idx,
                                        reduction='none')

        self.max_target_length = config['max_seq_length']

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 2
0
    def __init__(self, config, dataset):
        super(PointerNet, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.rnn_type = config['rnn_type']
        self.bidirectional = config['bidirectional']
        self.dropout_ratio = config['dropout_ratio']
        self.strategy = config['decoding_strategy']

        self.is_attention = config['is_attention']
        self.is_pgen = config['is_pgen'] and self.is_attention
        self.is_coverage = config['is_coverage'] and self.is_attention

        if self.is_coverage:
            self.cov_loss_lambda = config['cov_loss_lambda']

        if (self.strategy
                not in ['topk_sampling', 'greedy_search', 'beam_search']):
            raise NotImplementedError(
                "{} decoding strategy not implemented".format(self.strategy))
        if (self.strategy == 'beam_search'):
            self.beam_size = config['beam_size']

        self.context_size = self.hidden_size

        # define layers and loss
        self.source_token_embedder = nn.Embedding(
            self.source_vocab_size,
            self.embedding_size,
            padding_idx=self.padding_token_idx)

        if config['share_vocab']:
            self.target_token_embedder = self.source_token_embedder
        else:
            self.target_token_embedder = nn.Embedding(
                self.target_vocab_size,
                self.embedding_size,
                padding_idx=self.padding_token_idx)

        self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size,
                                       self.num_enc_layers, self.rnn_type,
                                       self.dropout_ratio, self.bidirectional)

        self.decoder = PointerRNNDecoder(self.target_vocab_size,
                                         self.embedding_size,
                                         self.hidden_size,
                                         self.context_size,
                                         self.num_dec_layers,
                                         self.rnn_type,
                                         self.dropout_ratio,
                                         is_attention=self.is_attention,
                                         is_pgen=self.is_pgen,
                                         is_coverage=self.is_coverage)

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 3
0
    def __init__(self, config, dataset):
        super(RNNVAE, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.latent_size = config['latent_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.num_highway_layers = config['num_highway_layers']
        self.rnn_type = config['rnn_type']
        self.max_epoch = config['epochs']
        self.bidirectional = config['bidirectional']
        self.dropout_ratio = config['dropout_ratio']
        self.eval_generate_num = config['eval_generate_num']
        self.max_length = config['max_seq_length']

        self.num_directions = 2 if self.bidirectional else 1
        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx

        # define layers and loss
        self.token_embedder = nn.Embedding(self.vocab_size,
                                           self.embedding_size,
                                           padding_idx=self.padding_token_idx)

        self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size,
                                       self.num_enc_layers, self.rnn_type,
                                       self.dropout_ratio, self.bidirectional)
        self.decoder = BasicRNNDecoder(self.embedding_size, self.hidden_size,
                                       self.num_dec_layers, self.rnn_type,
                                       self.dropout_ratio)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(self.hidden_size, self.vocab_size)
        self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_token_idx,
                                        reduction='none')

        if self.rnn_type == "lstm":
            self.hidden_to_mean = nn.Linear(
                self.num_directions * self.hidden_size, self.latent_size)
            self.hidden_to_logvar = nn.Linear(
                self.num_directions * self.hidden_size, self.latent_size)
            self.latent_to_hidden = nn.Linear(self.latent_size,
                                              2 * self.hidden_size)
        elif self.rnn_type == 'gru' or self.rnn_type == 'rnn':
            self.hidden_to_mean = nn.Linear(
                self.num_directions * self.hidden_size, self.latent_size)
            self.hidden_to_logvar = nn.Linear(
                self.num_directions * self.hidden_size, self.latent_size)
            self.latent_to_hidden = nn.Linear(self.latent_size,
                                              2 * self.hidden_size)
        else:
            raise ValueError("No such rnn type {} for RNNVAE.".format(
                self.rnn_type))

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 4
0
    def __init__(self, config, dataset):
        super(CNNVAE, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.latent_size = config['latent_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_highway_layers = config['num_highway_layers']
        self.rnn_type = config['rnn_type']
        self.max_epoch = config['epochs']
        self.decoder_kernel_size = config['decoder_kernel_size']
        self.decoder_dilations = config['decoder_dilations']
        self.bidirectional = config['bidirectional']
        self.dropout_ratio = config['dropout_ratio']
        self.eval_generate_num = config['eval_generate_num']
        self.max_length = config['max_seq_length']

        self.num_directions = 2 if self.bidirectional else 1
        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx

        # define layers and loss
        self.token_embedder = nn.Embedding(self.vocab_size,
                                           self.embedding_size,
                                           padding_idx=self.padding_token_idx)

        self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size,
                                       self.num_enc_layers, self.rnn_type,
                                       self.dropout_ratio, self.bidirectional)
        self.decoder = BasicCNNDecoder(self.embedding_size, self.latent_size,
                                       self.decoder_kernel_size,
                                       self.decoder_dilations,
                                       self.dropout_ratio)
        self.highway_1 = Highway(self.num_highway_layers, self.embedding_size)
        self.highway_2 = Highway(self.num_highway_layers,
                                 self.num_directions * self.hidden_size)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(self.decoder_kernel_size[-1],
                                      self.vocab_size)
        self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_token_idx,
                                        reduction='none')

        self.hidden_to_mean = nn.Linear(self.num_directions * self.hidden_size,
                                        self.latent_size)
        self.hidden_to_logvar = nn.Linear(
            self.num_directions * self.hidden_size, self.latent_size)

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 5
0
    def __init__(self, config, dataset):
        super(MaskGANGenerator, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.rnn_type = config['rnn_type']
        self.bidirectional = config['bidirectional']
        self.alignment_method = config['alignment_method']
        self.dropout_ratio = config['dropout_ratio']
        self.attention_type = config['attention_type']
        self.context_size = config['context_size']
        self.gamma = config['rl_discount_rate']
        self.advantage_clipping = config['advantage_clipping']
        self.eval_generate_num = config['eval_generate_num']
        self.attention_type = config['attention_type']

        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx

        self.mask_token_idx = dataset.user_token_idx[0]
        self.max_length = config['max_seq_length']
        self.embedder = nn.Embedding(self.vocab_size, self.embedding_size)

        # note!!! batch_first is true
        self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size,
                                       self.num_enc_layers, self.rnn_type,
                                       self.dropout_ratio, self.bidirectional)

        if self.attention_type is not None:
            self.decoder = AttentionalRNNDecoder(
                self.embedding_size, self.hidden_size, self.context_size,
                self.num_dec_layers, self.rnn_type, self.dropout_ratio,
                self.attention_type, self.alignment_method)
        else:
            self.decoder = BasicRNNDecoder(self.embedding_size,
                                           self.hidden_size,
                                           self.num_dec_layers, self.rnn_type,
                                           self.dropout_ratio)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(self.hidden_size, self.vocab_size)

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 6
0
    def __init__(self, config, dataset):
        super(MaskGANDiscriminator, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.rnn_type = config['rnn_type']
        self.bidirectional = config['bidirectional']
        self.alignment_method = config['alignment_method']
        self.dropout_ratio = config['dropout_ratio']
        self.attention_type = config['attention_type']
        self.context_size = config['context_size']
        self.attention_type = config['attention_type']

        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx
        self.mask_token_idx = dataset.user_token_idx[0]

        self.encoder = BasicRNNEncoder(self.embedding_size, self.hidden_size,
                                       self.num_enc_layers, self.rnn_type,
                                       self.dropout_ratio, self.bidirectional)

        if self.attention_type is not None:
            self.decoder = AttentionalRNNDecoder(
                self.embedding_size, self.hidden_size, self.context_size,
                self.num_dec_layers, self.rnn_type, self.dropout_ratio,
                self.attention_type, self.alignment_method)
        else:
            self.decoder = BasicRNNDecoder(self.embedding_size,
                                           self.hidden_size,
                                           self.num_dec_layers, self.rnn_type,
                                           self.dropout_ratio)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.fc_linear = nn.Linear(self.hidden_size, 1)
        self.critic_fc_linear = nn.Linear(self.hidden_size, 1)

        # parameters initialization
        self.apply(xavier_normal_initialization)
Exemplo n.º 7
0
    def __init__(self, config, dataset):
        super(CVAE, self).__init__(config, dataset)

        # load parameters info
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.latent_size = config['latent_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.rnn_type = config['rnn_type']
        self.max_epoch = config['epochs']
        self.bidirectional = config['bidirectional']
        self.dropout_ratio = config['dropout_ratio']
        self.eval_generate_num = config['eval_generate_num']
        self.prior_neuron_size = config['prior_neuron_size']  # neuron size in the prior network
        self.posterior_neuron_size = config['posterior_neuron_size']  # neuron size in the posterior network
        self.latent_neuron_size = config['latent_neuron_size']  # neuron size in latent_to_hidden

        self.num_directions = 2 if self.bidirectional else 1

        # define layers and loss
        self.token_embedder = nn.Embedding(self.vocab_size, self.embedding_size, padding_idx=self.padding_token_idx)
        self.encoder = BasicRNNEncoder(
            self.embedding_size, self.hidden_size, self.num_enc_layers, self.rnn_type, self.dropout_ratio,
            self.bidirectional
        )
        self.decoder = BasicRNNDecoder(
            self.embedding_size, self.hidden_size, self.num_dec_layers, self.rnn_type, self.dropout_ratio
        )

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(self.hidden_size, self.vocab_size)
        self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_token_idx, reduction='none')

        if self.rnn_type == "lstm":
            # prior network
            self.prior_mean_linear1 = nn.Linear(2 * self.num_directions * self.hidden_size, self.prior_neuron_size)
            self.prior_mean_linear2 = nn.Linear(self.prior_neuron_size, self.latent_size)
            self.prior_logvar_linear1 = nn.Linear(2 * self.num_directions * self.hidden_size, self.prior_neuron_size)
            self.prior_logvar_linear2 = nn.Linear(self.prior_neuron_size, self.latent_size)

            # posterior network
            self.posterior_mean_linear1 = nn.Linear(
                3 * self.num_directions * self.hidden_size, self.posterior_neuron_size
            )
            self.posterior_mean_linear2 = nn.Linear(self.posterior_neuron_size, self.latent_size)
            self.posterior_logvar_linear1 = nn.Linear(
                3 * self.num_directions * self.hidden_size, self.posterior_neuron_size
            )
            self.posterior_logvar_linear2 = nn.Linear(self.posterior_neuron_size, self.latent_size)

            self.latent_to_hidden = nn.Linear(
                2 * self.num_directions * self.hidden_size + self.latent_size, 2 * self.hidden_size
            )  # first args size=title+pre_line+z
        elif self.rnn_type == 'gru' or self.rnn_type == 'rnn':
            # prior network
            self.prior_mean_linear1 = nn.Linear(2 * self.num_directions * self.hidden_size, self.prior_neuron_size)
            self.prior_mean_linear2 = nn.Linear(self.prior_neuron_size, self.latent_size)
            self.prior_logvar_linear1 = nn.Linear(2 * self.num_directions * self.hidden_size, self.prior_neuron_size)
            self.prior_logvar_linear2 = nn.Linear(self.prior_neuron_size, self.latent_size)

            # posterior network
            self.posterior_mean_linear1 = nn.Linear(
                3 * self.num_directions * self.hidden_size, self.posterior_neuron_size
            )
            self.posterior_mean_linear2 = nn.Linear(self.posterior_neuron_size, self.latent_size)
            self.posterior_logvar_linear1 = nn.Linear(
                3 * self.num_directions * self.hidden_size, self.posterior_neuron_size
            )
            self.posterior_logvar_linear2 = nn.Linear(self.posterior_neuron_size, self.latent_size)

            # prepare for the decoder
            self.latent_to_hidden1 = nn.Linear(
                2 * self.num_directions * self.hidden_size + self.latent_size, self.latent_neuron_size
            )
            self.latent_to_hidden2 = nn.Linear(self.latent_neuron_size, self.hidden_size)
        else:
            raise ValueError("No such rnn type {} for CVAE.".format(self.rnn_type))

        # parameters initialization
        self.apply(self.xavier_uniform_initialization)
Exemplo n.º 8
0
    def __init__(self, config, dataset):
        super(Kb2Text, self).__init__(config, dataset)

        # load parameters info
        self.rnn_type = config['rnn_type']
        self.attention_type = config['attention_type']
        self.alignment_method = config['alignment_method']
        self.embedding_size = config['embedding_size']
        self.hidden_size = config['hidden_size']
        self.num_enc_layers = config['num_enc_layers']
        self.num_dec_layers = config['num_dec_layers']
        self.attn_weight_dropout_ratio = config['attn_weight_dropout_ratio']
        self.dropout_ratio = config['dropout_ratio']
        self.strategy = config['decoding_strategy']
        self.num_heads = config['num_heads']
        self.GAT_layer_nums = config['GAT_layer_nums']
        self.NODE_TYPE = {'entity': 0, 'root': 1, 'relation': 2}
        self.source_relation_idx2token = dataset.source_relation_idx2token
        self.source_relation_token2idx = dataset.source_relation_token2idx
        self.REL_SET = []
        self.type_vocab = []
        with open(config["relation_vocab"]) as f:
            for line in f:
                self.REL_SET.append(line.rstrip())
        with open(config["type_vocab"]) as f:
            for line in f:
                self.type_vocab.append(line.rstrip())

        self.REL_LEN = 2 * len(self.REL_SET) + 1

        if (self.strategy
                not in ['topk_sampling', 'greedy_search', 'beam_search']):
            raise NotImplementedError(
                "{} decoding strategy not implemented".format(self.strategy))
        if (self.strategy == 'beam_search'):
            self.beam_size = config['beam_size']

        self.padding_token_idx = dataset.padding_token_idx
        self.sos_token_idx = dataset.sos_token_idx
        self.eos_token_idx = dataset.eos_token_idx
        self.source_token2idx = dataset.source_token2idx
        self.source_entity_token2idx = dataset.source_entity_token2idx
        self.entity_vocab_size = len(self.source_entity_token2idx)

        self.source_token_embedder = nn.Embedding(
            self.source_vocab_size,
            self.embedding_size,
            padding_idx=self.padding_token_idx)

        self.target_token_embedder = nn.Embedding(
            self.target_vocab_size,
            self.embedding_size,
            padding_idx=self.padding_token_idx)

        self.entity_token_embedder = nn.Embedding(
            self.entity_vocab_size,
            self.embedding_size,
            padding_idx=self.padding_token_idx)

        self.rel_token_embedder = nn.Embedding(
            self.REL_LEN,
            self.embedding_size,
            padding_idx=self.padding_token_idx)

        self.entity_encoder = BasicRNNEncoder(self.embedding_size,
                                              self.hidden_size // 2,
                                              self.num_enc_layers, 'lstm',
                                              self.dropout_ratio)

        self.source_encoder = BasicRNNEncoder(self.embedding_size,
                                              self.hidden_size // 2,
                                              self.num_enc_layers, 'lstm',
                                              self.dropout_ratio)

        self.graph_encoder = GraphTransformer(self.embedding_size,
                                              self.attn_weight_dropout_ratio,
                                              self.dropout_ratio,
                                              self.GAT_layer_nums)

        self.attn_layer = MultiHeadAttention(self.embedding_size,
                                             self.num_heads,
                                             self.attn_weight_dropout_ratio)

        self.decoder = ContextAttentionalDecoder(
            self.embedding_size, self.hidden_size, self.embedding_size,
            self.num_dec_layers, self.rnn_type, self.dropout_ratio,
            self.attention_type, self.alignment_method)

        self.dropout = nn.Dropout(self.dropout_ratio)
        self.vocab_linear = nn.Linear(3 * self.hidden_size,
                                      self.target_vocab_size)
        self.copy_linear = nn.Linear(3 * self.hidden_size, 1)
        self.d_linear = nn.Linear(3 * self.embedding_size, self.embedding_size)
        self.copy_attn = MultiHeadAttention(self.embedding_size,
                                            1,
                                            0.,
                                            return_distribute=True)

        self.loss = nn.NLLLoss(ignore_index=self.padding_token_idx,
                               reduction='none')

        self.max_target_length = config['max_seq_length']

        # parameters initialization
        self.apply(xavier_normal_initialization)