def _create_examples(self, lines, set_type):
   """Creates examples for the training and dev sets."""
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "%s-%s" % (set_type, i)
     text_a = tokenization.convert_to_unicode(line[3])
     text_b = tokenization.convert_to_unicode(line[4])
     if set_type == "test":
       label = "0"
     else:
       label = tokenization.convert_to_unicode(line[0])
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
   return examples
 def _create_examples(self, lines, set_type):
   """Creates examples for the training and dev sets."""
   examples = []
   for (i, line) in enumerate(lines):
     # Only the test set has a header
     if set_type == "test" and i == 0:
       continue
     guid = "%s-%s" % (set_type, i)
     if set_type == "test":
       text_a = tokenization.convert_to_unicode(line[1])
       label = "0"
     else:
       text_a = tokenization.convert_to_unicode(line[3])
       label = tokenization.convert_to_unicode(line[1])
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
   return examples
 def get_dev_examples(self, data_dir):
   """See base class."""
   lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "dev-%d" % (i)
     language = tokenization.convert_to_unicode(line[0])
     if language != tokenization.convert_to_unicode(self.language):
       continue
     text_a = tokenization.convert_to_unicode(line[6])
     text_b = tokenization.convert_to_unicode(line[7])
     label = tokenization.convert_to_unicode(line[1])
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
   return examples
 def get_train_examples(self, data_dir):
   """See base class."""
   lines = self._read_tsv(
       os.path.join(data_dir, "multinli",
                    "multinli.train.%s.tsv" % self.language))
   examples = []
   for (i, line) in enumerate(lines):
     if i == 0:
       continue
     guid = "train-%d" % (i)
     text_a = tokenization.convert_to_unicode(line[0])
     text_b = tokenization.convert_to_unicode(line[1])
     label = tokenization.convert_to_unicode(line[2])
     if label == tokenization.convert_to_unicode("contradictory"):
       label = tokenization.convert_to_unicode("contradiction")
     examples.append(
         InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
   return examples
def create_training_instances(input_files, tokenizer, max_seq_length,
                              dupe_factor, short_seq_prob, masked_lm_prob,
                              max_predictions_per_seq, rng):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]

    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    for input_file in input_files:
        with tf.io.gfile.GFile(input_file, "rb") as reader:
            while True:
                line = tokenization.convert_to_unicode(reader.readline())
                if not line:
                    break
                line = line.strip()

                # Empty lines are used as document delimiters
                if not line:
                    all_documents.append([])
                tokens = tokenizer.tokenize(line)
                if tokens:
                    all_documents[-1].append(tokens)

    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    rng.shuffle(all_documents)

    vocab_words = list(tokenizer.vocab.keys())
    instances = []
    for _ in range(dupe_factor):
        for document_index in range(len(all_documents)):
            instances.extend(
                create_instances_from_document(
                    all_documents, document_index, max_seq_length, short_seq_prob,
                    masked_lm_prob, max_predictions_per_seq, vocab_words, rng))

    rng.shuffle(instances)
    return instances