Exemplo n.º 1
0
def DFCN_module(xyz,
                points,
                radius,
                out_channel,
                is_training,
                bn_decay,
                scope='point_DFCN',
                bn=True,
                use_xyz=True,
                use_nchw=False):
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        # Grouping
        new_xyz, new_points, idx, grouped_xyz = DFCN_group_two(
            radius, xyz, points, use_xyz)

        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
        for i in range(2):
            if i == 0:
                new_points = tf_util.conv2d(new_points,
                                            out_channel, [1, 2],
                                            padding='VALID',
                                            stride=[1, 2],
                                            bn=bn,
                                            is_training=is_training,
                                            scope='conv%d' % (i),
                                            bn_decay=bn_decay,
                                            data_format=data_format)
            else:
                new_points = tf_util.conv2d(new_points,
                                            out_channel, [1, 8],
                                            padding='VALID',
                                            stride=[1, 8],
                                            bn=bn,
                                            is_training=is_training,
                                            scope='conv%d' % (i),
                                            bn_decay=bn_decay,
                                            data_format=data_format)
        # add fc
        new_points = tf_util.conv2d(new_points,
                                    out_channel, [1, 1],
                                    padding='VALID',
                                    stride=[1, 1],
                                    bn=bn,
                                    is_training=is_training,
                                    scope='conv_fc',
                                    bn_decay=bn_decay,
                                    data_format=data_format)
        if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        new_points = tf.squeeze(new_points,
                                [2])  # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx
Exemplo n.º 2
0
def pointnet_fp_module(xyz1, xyz2, points1, points2, mlp, is_training, bn_decay, scope, bn=True):
    ''' PointNet Feature Propogation (FP) Module
        Input:
            xyz1: (batch_size, ndataset1, 3) TF tensor
            xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1
            points1: (batch_size, ndataset1, nchannel1) TF tensor
            points2: (batch_size, ndataset2, nchannel2) TF tensor
            mlp: list of int32 -- output size for MLP on each point
        Return:
            new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
    '''
    with tf.compat.v1.variable_scope(scope) as sc:
        dist, idx = three_nn(xyz1, xyz2)
        dist = tf.maximum(dist, 1e-10)
        norm = tf.compat.v1.reduce_sum((1.0 / dist), axis=2, keep_dims=True)
        norm = tf.tile(norm, [1, 1, 3])
        weight = (1.0 / dist) / norm
        interpolated_points = three_interpolate(points2, idx, weight)

        if points1 is not None:
            new_points1 = tf.concat(axis=2, values=[interpolated_points, points1])  # B,ndataset1,nchannel1+nchannel2
        else:
            new_points1 = interpolated_points
        new_points1 = tf.expand_dims(new_points1, 2)
        for i, num_out_channel in enumerate(mlp):
            new_points1 = tf_util.conv2d(new_points1, num_out_channel, [1, 1],
                                         padding='VALID', stride=[1, 1],
                                         bn=bn, is_training=is_training,
                                         scope='conv_%d' % (i), bn_decay=bn_decay)
        new_points1 = tf.squeeze(new_points1, [2])  # B,ndataset1,mlp[-1]
        return new_points1
Exemplo n.º 3
0
def pointSIFT_res_module(xyz, points, radius, out_channel, is_training, bn_decay, scope='point_sift', bn=True, use_xyz=True, same_dim=False, merge='add'):
    data_format = 'NHWC'
    with tf.compat.v1.variable_scope(scope) as sc:
        # conv1
        _, new_points, idx, _ = pointSIFT_group(radius, xyz, points, use_xyz=use_xyz)

        for i in range(3):
            new_points = tf_util.conv2d(new_points, out_channel, [1, 2],
                                        padding='VALID', stride=[1, 2],
                                        bn=bn, is_training=is_training,
                                        scope='c0_conv%d' % (i), bn_decay=bn_decay,
                                        data_format=data_format)
        new_points = tf.squeeze(new_points, [2])
        # conv2
        _, new_points, idx, _ = pointSIFT_group_with_idx(xyz, idx=idx, points=new_points, use_xyz=use_xyz)

        for i in range(3):
            if i == 2:
                act = None
            else:
                act = tf.nn.relu
            new_points = tf_util.conv2d(new_points, out_channel, [1, 2],
                                        padding='VALID', stride=[1, 2],
                                        bn=bn, is_training=is_training,
                                        scope='c1_conv%d' % (i), bn_decay=bn_decay,
                                        activation_fn=act,
                                        data_format=data_format)
        new_points = tf.squeeze(new_points, [2])
        # residual part..
        if points is not None:
            if same_dim is True:
                points = tf_util.conv1d(points, out_channel, 1, padding='VALID', bn=bn, is_training=is_training, scope='merge_channel_fc', bn_decay=bn_decay)
            if merge == 'add':
                new_points = new_points + points
            elif merge == 'concat':
                new_points = tf.concat([new_points, points], axis=-1)
            else:
                print("ways not found!!!")
        new_points = tf.nn.relu(new_points)
        return xyz, new_points, idx
Exemplo n.º 4
0
def pointnet_sa_module_msg(xyz, points, npoint, radius_list, nsample_list, mlp_list, is_training, bn_decay, scope,
                           bn=True, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) module with Multi-Scale Grouping (MSG)
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: list of float32 -- search radius in local region
            nsample: list of int32 -- how many points in each local region
            mlp: list of list of int32 -- output size for MLP on each point
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, \sum_k{mlp[k][-1]}) TF tensor
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.variable_scope(scope) as sc:
        new_xyz = gather_point(xyz, farthest_point_sample(npoint, xyz))
        new_points_list = []
        for i in range(len(radius_list)):
            radius = radius_list[i]
            nsample = nsample_list[i]
            idx, pts_cnt = query_ball_point(radius, nsample, xyz, new_xyz)
            grouped_xyz = group_point(xyz, idx)
            grouped_xyz -= tf.tile(tf.expand_dims(new_xyz, 2), [1, 1, nsample, 1])
            if points is not None:
                grouped_points = group_point(points, idx)
                if use_xyz:
                    grouped_points = tf.concat([grouped_points, grouped_xyz], axis=-1)
            else:
                grouped_points = grouped_xyz
            if use_nchw: grouped_points = tf.transpose(grouped_points, [0, 3, 1, 2])
            for j, num_out_channel in enumerate(mlp_list[i]):
                grouped_points = tf_util.conv2d(grouped_points, num_out_channel, [1, 1],
                                                padding='VALID', stride=[1, 1], bn=bn, is_training=is_training,
                                                scope='conv%d_%d' % (i, j), bn_decay=bn_decay)
            if use_nchw: grouped_points = tf.transpose(grouped_points, [0, 2, 3, 1])
            new_points = tf.reduce_max(grouped_points, axis=[2])
            new_points_list.append(new_points)
        new_points_concat = tf.concat(new_points_list, axis=-1)
        return new_xyz, new_points_concat
Exemplo n.º 5
0
def pointnet_sa_module(xyz, points, npoint, radius, nsample, mlp, mlp2, group_all, is_training, bn_decay, scope,
                       bn=True, pooling='max', knn=False, use_xyz=True, use_nchw=False):
    ''' PointNet Set Abstraction (SA) Module
        Input:
            xyz: (batch_size, ndataset, 3) TF tensor
            points: (batch_size, ndataset, channel) TF tensor
            npoint: int32 -- #points sampled in farthest point sampling
            radius: float32 -- search radius in local region
            nsample: int32 -- how many points in each local region
            mlp: list of int32 -- output size for MLP on each point
            mlp2: list of int32 -- output size for MLP on each region
            group_all: bool -- group all points into one PC if set true, OVERRIDE
                npoint, radius and nsample settings
            use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
            use_nchw: bool, if True, use NCHW data format for conv2d, which is usually faster than NHWC format
        Return:
            new_xyz: (batch_size, npoint, 3) TF tensor
            new_points: (batch_size, npoint, mlp[-1] or mlp2[-1]) TF tensor
            idx: (batch_size, npoint, nsample) int32 -- indices for local regions
    '''
    data_format = 'NCHW' if use_nchw else 'NHWC'
    with tf.compat.v1.variable_scope(scope) as sc:
        # Sample and Grouping
        if group_all:
            nsample = xyz.get_shape()[1].value
            new_xyz, new_points, idx, grouped_xyz = sample_and_group_all(xyz, points, use_xyz)
        else:
            new_xyz, new_points, idx, grouped_xyz = sample_and_group(npoint, radius, nsample, xyz, points, knn, use_xyz)

        # Point Feature Embedding
        if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
        for i, num_out_channel in enumerate(mlp):
            new_points = tf_util.conv2d(new_points, num_out_channel, [1, 1],
                                        padding='VALID', stride=[1, 1],
                                        bn=bn, is_training=is_training,
                                        scope='conv%d' % (i), bn_decay=bn_decay,
                                        data_format=data_format)
        if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        # Pooling in Local Regions
        if pooling == 'max':
            new_points = tf.compat.v1.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
        elif pooling == 'avg':
            new_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
        elif pooling == 'weighted_avg':
            with tf.variable_scope('weighted_avg'):
                dists = tf.norm(grouped_xyz, axis=-1, ord=2, keep_dims=True)
                exp_dists = tf.exp(-dists * 5)
                weights = exp_dists / tf.reduce_sum(exp_dists, axis=2,
                                                    keep_dims=True)  # (batch_size, npoint, nsample, 1)
                new_points *= weights  # (batch_size, npoint, nsample, mlp[-1])
                new_points = tf.reduce_sum(new_points, axis=2, keep_dims=True)
        elif pooling == 'max_and_avg':
            max_points = tf.reduce_max(new_points, axis=[2], keep_dims=True, name='maxpool')
            avg_points = tf.reduce_mean(new_points, axis=[2], keep_dims=True, name='avgpool')
            new_points = tf.concat([avg_points, max_points], axis=-1)

        # [Optional] Further Processing
        if mlp2 is not None:
            if use_nchw: new_points = tf.transpose(new_points, [0, 3, 1, 2])
            for i, num_out_channel in enumerate(mlp2):
                new_points = tf_util.conv2d(new_points, num_out_channel, [1, 1],
                                            padding='VALID', stride=[1, 1],
                                            bn=bn, is_training=is_training,
                                            scope='conv_post_%d' % (i), bn_decay=bn_decay,
                                            data_format=data_format)
            if use_nchw: new_points = tf.transpose(new_points, [0, 2, 3, 1])

        new_points = tf.squeeze(new_points, [2])  # (batch_size, npoints, mlp2[-1])
        return new_xyz, new_points, idx