Exemplo n.º 1
0
 def __init__(self):
     self.client = skein.ApplicationClient.from_current()
     self.task = get_task()
     self.step_counter = 0
     self.eval_start_time = 0.0
     self.eval_step_dur_accu = 0.0
     self.start_time = time.time()
Exemplo n.º 2
0
def _gen_monitored_train_and_evaluate(client: skein.ApplicationClient):
    task = get_task()

    def train_and_evaluate(estimator: tf.estimator,
                           train_spec: tf.estimator.TrainSpec,
                           eval_spec: tf.estimator.EvalSpec):
        event.broadcast_train_eval_start_timer(client, task)
        tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
        event.broadcast_train_eval_stop_timer(client, task)

    return train_and_evaluate
Exemplo n.º 3
0
def main():
    client = skein.ApplicationClient.from_current()
    task = get_task()
    task_type, task_id = get_task_description()
    event.init_event(client, task, "127.0.0.1:0")
    _task_commons._setup_container_logs(client)

    if task_type == "evaluator":
        evaluator_fn(client)
    else:
        logger.info(f"{task_type}:{task_id}: nothing to do")

    event.stop_event(client, task, None)
Exemplo n.º 4
0
def start_cluster(
        host_port: typing.Tuple[str, int], client: skein.ApplicationClient,
        all_tasks: typing.List[str]) -> typing.Dict[str, typing.List[str]]:
    # There is a race condition between acquiring a TCP port for
    # ``tf.train.Server``, and calling ``train_and_evaluate``.
    # There is no TensorFlow API to get rid of the race condition
    # completely, but the window of opportunity can be reduced by
    # preempting the server.
    # See https://github.com/tensorflow/tensorflow/issues/21492
    cluster_spec: typing.Dict = dict()
    host, port = host_port
    event.init_event(client, get_task(),
                     f"{socket.gethostbyname(host)}:{port}")
    cluster_spec = aggregate_spec(client, all_tasks)
    return cluster_spec
Exemplo n.º 5
0
def main():
    client = skein.ApplicationClient.from_current()
    task_type, task_id = get_task_description()
    task = get_task()
    event.init_event(client, task, "127.0.0.1:0")
    _task_commons._setup_container_logs(client)
    net_if = get_net_if()

    if task_type == 'chief':
        _driver_fn(client, net_if)
    if task_type in ['worker', 'chief']:
        _worker_fn(client, task, net_if)
    elif task_type == 'evaluator':
        evaluator_fn(client)
    else:
        logger.error(f'Unknown task type {task_type}')

    event.stop_event(client, task, None)
Exemplo n.º 6
0
def _shutdown_container(client: skein.ApplicationClient,
                        cluster_tasks: List[str],
                        session_config: tf.compat.v1.ConfigProto,
                        thread: Optional[MonitoredThread]) -> None:
    # Wait for all tasks connected to this one. The set of tasks to
    # wait for contains all tasks in the cluster, or the ones
    # matching ``device_filters`` if set. The implementation assumes
    # that ``device_filers`` are symmetric.
    exception = thread.exception if thread is not None and isinstance(thread, MonitoredThread) \
        else None
    task = get_task()
    event.stop_event(client, task, exception)
    _wait_for_connected_tasks(client, cluster_tasks,
                              getattr(session_config, "device_filters", []))

    event.broadcast_container_stop_time(client, task)

    if exception is not None:
        raise exception from None
Exemplo n.º 7
0
def _execute_dispatched_function(
        client: skein.ApplicationClient,
        experiment: Union[Experiment, KerasExperiment]) -> MonitoredThread:
    task_type, task_id = get_task_description()
    _logger.info(f"Starting execution {task_type}:{task_id}")
    if isinstance(experiment, Experiment):
        thread = MonitoredThread(
            name=f"{task_type}:{task_id}",
            target=_gen_monitored_train_and_evaluate(client),
            args=tuple(experiment),
            daemon=True)
    elif isinstance(experiment, KerasExperiment):
        raise ValueError(
            "KerasExperiment using parameter strategy is unsupported")
    else:
        raise ValueError(
            "experiment must be an Experiment or a KerasExperiment")
    thread.start()
    task = get_task()
    event.start_event(client, task)
    return thread
Exemplo n.º 8
0
def start_tf_board(client: skein.ApplicationClient, tf_board_model_dir: str):
    task = get_task()
    os.environ['GCS_READ_CACHE_DISABLED'] = '1'
    os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'cpp'
    os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION'] = '2'
    try:
        program.setup_environment()
        tensorboard = program.TensorBoard()
        with _internal.reserve_sock_addr() as (h, p):
            tensorboard_url = f"http://{h}:{p}"
            argv = [
                'tensorboard', f"--logdir={tf_board_model_dir}", f"--port={p}"
            ]
            tb_extra_args = os.getenv('TB_EXTRA_ARGS', "")
            if tb_extra_args:
                argv += tb_extra_args.split(' ')
            tensorboard.configure(argv)
        tensorboard.launch()
        event.start_event(client, task)
        event.url_event(client, task, f"{tensorboard_url}")
    except Exception as e:
        _logger.error("Cannot start tensorboard", e)
        event.stop_event(client, task, e)
Exemplo n.º 9
0
def main() -> None:
    _log_sys_info()
    task_type, task_id = get_task_description()
    task = get_task()
    client = skein.ApplicationClient.from_current()

    _setup_container_logs(client)
    cluster_tasks = _get_cluster_tasks(client)

    model_dir = os.getenv('TB_MODEL_DIR', "")
    if not model_dir:
        _logger.info("Read model_dir from estimator config")
        experiment = _get_experiment(client)
        if isinstance(experiment, Experiment):
            model_dir = experiment.estimator.config.model_dir
        elif isinstance(experiment, KerasExperiment):
            model_dir = experiment.model_dir
        else:
            raise ValueError("experiment must be an Experiment or a KerasExperiment")

    _logger.info(f"Starting tensorboard on {model_dir}")

    thread = _internal.MonitoredThread(
        name=f"{task_type}:{task_id}",
        target=tensorboard.start_tf_board,
        args=(client, model_dir),
        daemon=True)
    thread.start()

    for cluster_task in cluster_tasks:
        event.wait(client, f"{cluster_task}/stop")

    timeout = tensorboard.get_termination_timeout()
    thread.join(timeout)

    event.stop_event(client, task, thread.exception)
    event.broadcast_container_stop_time(client, task)