Exemplo n.º 1
0
def train_merge():
    hyperparams = {
        'batch_size': 50,
        'learning_rate': 1e-4,
        'num_updates': 20000,
        'grad_norm_clip': 5
    }
    model = MnistMergeModel(hyperparams)
    loss = tb.Crossentropy(hyperparams)
    acc = tb.CatAcc(hyperparams)
    evaluator = tb.Evaluator(hyperparams, loss, acc)
    optim = tb.AdamOptim(hyperparams)
    trainer = tb.Trainer(model, hyperparams, loss, optim, evaluator)

    mnist = load_data()

    train_xs = {
        'image_1': mnist['train']['images'],
        'image_2': mnist['train']['images']
    }
    train_y = mnist['train']['labels']
    val_xs = {
        'image_1': mnist['test']['images'],
        'image_2': mnist['test']['images']
    }
    val_y = mnist['test']['labels']

    trainer.train(train_xs, train_y, val_xs, val_y)
    evaluator.eval(model, val_xs, val_y)
Exemplo n.º 2
0
def train():
    hyperparams = {'batch_size': 50,
                   'learning_rate': 0.001,
                   'grad_decay': 0.99,
                   'grad_epsilon': 0.01,
                   'num_updates': 20000,
                   'grad_norm_clip': 5}
    model = CoinbaseModel(hyperparams)
    loss = tb.Crossentropy(hyperparams)
    acc = tb.CatAcc(hyperparams)
    evaluator = tb.Evaluator(hyperparams, loss, acc)
    optim = tb.RMSPropOptim(hyperparams)
    trainer = tb.Trainer(model, hyperparams, loss, optim, evaluator)

    split = 10000
    data = np.load('data/coinbase_n1.npz')
    train_xs = {'first_ticks': data['first_ticks'][:split],
                'last_ticks': data['last_ticks'][:split],
                'features': data['features'][:split]}
    train_y = data['targets'][:split]

    val_xs = {'first_ticks': data['first_ticks'][split:],
              'last_ticks': data['last_ticks'][split:],
              'features': data['features'][split:]}
    val_y = data['targets'][split:]

    trainer.train(train_xs, train_y,
                  val_xs, val_y,
                  val_cmp=True)
    evaluator.eval(model, val_xs, val_y)
Exemplo n.º 3
0
def train():
    hyperparams = {'batch_size': 512,
                   'learning_rate': 0.0001,
                   'grad_decay': 0.95,
                   'grad_epsilon': 0.01,
                   'num_updates': 100000,
                   'grad_norm_clip': 5}
    with tf.device('/cpu:0'):
        model = CoinbaseModel(hyperparams)
    loss = tb.Crossentropy(hyperparams)
    acc = tb.CatAcc(hyperparams)
    evaluator = tb.Evaluator(hyperparams, loss, acc)
    optim = tb.RMSPropOptim(hyperparams)
    trainer = tb.Trainer(model, hyperparams, loss, optim, evaluator)

    split = 90000
    data = np.load('data/coinbase-ticks-100000.npz')
    print(data['ticks'].shape)
    train_xs = {'ticks': data['ticks'][:split]}
    train_y = data['targets'][:split]

    val_xs = {'ticks': data['ticks'][split:]}
    val_y = data['targets'][split:]

    with tf.device('/cpu:0'):
        trainer.train(train_xs, train_y,
                      val_xs, val_y,
                      val_cmp=True)
    evaluator.eval(model, val_xs, val_y)
Exemplo n.º 4
0
def train_char_rnn():
    print("Building network ...")

    gen_info = load_data(seqlength=20, text_fnm='data/nietzsche.txt')
    train_xs = {'text': gen_info['data']['train']['text']}
    train_y = gen_info['data']['train']['targets']
    test_xs = {'text': gen_info['data']['test']['text']}
    test_y = gen_info['data']['test']['targets']
    print(train_xs['text'][:2])
    print(train_y[:2])

    hyperparams = {
        'batch_size': 128,
        'learning_rate': 0.001,
        'num_updates': 50000,
        'grad_norm_clip': 5,
        'vocab_size': gen_info['vocab_size'],
        'char_to_index': gen_info['char_to_index'],
        'index_to_char': gen_info['index_to_char'],
        'seqlength': gen_info['seqlength']
    }

    model = LangModel(hyperparams)
    loss = tb.Crossentropy(hyperparams)
    acc = tb.Perplexity(hyperparams)
    evaluator = tb.SeqGenEvaluator(hyperparams,
                                   loss,
                                   acc,
                                   seed='the quick brown fox jumps')
    optim = tb.AdamOptim(hyperparams)
    trainer = tb.Trainer(model, hyperparams, loss, optim, evaluator)

    trainer.train(train_xs, train_y, test_xs, test_y, display_interval=100)
Exemplo n.º 5
0
def train_brnn():
    # gen_info = load_data(seqlength=20,
    #                      text_fnm='data/ptb/ptb.train.txt')
    # train_xs = {'text': gen_info['data']['train']['text']}
    # train_y = gen_info['data']['train']['targets']
    # val_xs = {'text': gen_info['data']['test']['text']}
    # val_y = gen_info['data']['test']['targets']
    # print(train_xs['text'][:2])
    # print(train_y[:2])
    # hyperparams = {'batch_size': 128,
    #                'learning_rate': 0.01,
    #                'num_updates': 50000,
    #                'grad_norm_clip': 5,
    #                'vocab_size': gen_info['vocab_size'],
    #                'char_to_index': gen_info['char_to_index'],
    #                'index_to_char': gen_info['index_to_char'],
    #                'seqlength': gen_info['seqlength']}

    seqlength = 20
    vocab_size = 10000
    data = load_data(seqlength=seqlength)
    train_xs = {'text': data['train']['text']}
    train_y = data['train']['targets']
    val_xs = {'text': data['test']['text']}
    val_y = data['test']['targets']

    hyperparams = {'batch_size': 128,
                   'learning_rate': 0.0001,
                   'num_updates': 50000,
                   'grad_norm_clip': 5,
                   'vocab_size': vocab_size,
                   'seqlength': seqlength}
    model = PTBBasic(hyperparams)
    loss = tb.Crossentropy(hyperparams)
    acc = tb.Perplexity(hyperparams)
    evaluator = tb.PerplexityEvaluator(
        hyperparams, loss, acc,
        seed='the quick brown fox jumps')
    optim = tb.AdamOptim(hyperparams)
    trainer = tb.Trainer(model, hyperparams, loss, optim, evaluator)

    print('Training...')

    trainer.train(train_xs, train_y,
                  val_xs, val_y,
                  val_cmp=False,
                  display_interval=100)
    evaluator.eval(model, val_xs, val_y)