Exemplo n.º 1
0
    def __init__(self, do_cuda=True):
        print('Using TfeatFeature2D')
        self.model_base_path = config.cfg.root_folder + '/thirdparty/tfeat/'

        self.do_cuda = do_cuda & torch.cuda.is_available()
        print('cuda:', self.do_cuda)
        device = torch.device("cuda:0" if self.do_cuda else "cpu")

        torch.set_grad_enabled(False)

        # mag_factor is how many times the original keypoint scale
        # is enlarged to generate a patch from a keypoint
        self.mag_factor = 3

        print('==> Loading pre-trained network.')
        #init tfeat and load the trained weights
        self.model = tfeat_model.TNet()
        self.models_path = self.model_base_path + 'pretrained-models'
        self.net_name = 'tfeat-liberty'
        self.model.load_state_dict(
            torch.load(
                os.path.join(self.models_path, self.net_name + ".params")))
        if self.do_cuda:
            self.model.cuda()
            print('Extracting on GPU')
        else:
            print('Extracting on CPU')
            self.model = model.cpu()
        self.model.eval()
        print('==> Successfully loaded pre-trained network.')
Exemplo n.º 2
0
import os

import cv2
import tfeat_utils
import numpy as np
import cv2
from matplotlib import pyplot as plt

tfeat_base_path = '../../thirdparty/tfeat/'

# open images
img1 = cv2.imread(tfeat_base_path + 'imgs/v_churchill/1.ppm', 0)
img2 = cv2.imread(tfeat_base_path + 'imgs/v_churchill/6.ppm', 0)

#init tfeat and load the trained weights
tfeat = tfeat_model.TNet()
models_path = tfeat_base_path + 'pretrained-models'
net_name = 'tfeat-liberty'
tfeat.load_state_dict(
    torch.load(os.path.join(models_path, net_name + ".params")))
tfeat.cuda()
tfeat.eval()

# use BRISK detector
brisk = cv2.BRISK_create()
kp1, des1 = brisk.detectAndCompute(img1, None)
kp2, des2 = brisk.detectAndCompute(img2, None)

bf = cv2.BFMatcher(cv2.NORM_HAMMING)
matches = bf.knnMatch(des1, des2, k=2)
# Apply ratio test
Exemplo n.º 3
0
def main():
    args = parse_args()

    tfeat = tfeat_model.TNet()
    tfeat.load_state_dict(torch.load(args.model_path))
    tfeat.cuda()
    tfeat.eval()

    if not os.path.exists(os.path.join(args.dataset_path, "descriptors")):
        os.makedirs(os.path.join(args.dataset_path, "descriptors"))

    image_names = os.listdir(os.path.join(args.dataset_path, "images"))

    for i, image_name in enumerate(image_names):

        patches_path = os.path.join(args.dataset_path, "descriptors",
                                    image_name + ".bin.patches.mat")
        if not os.path.exists(patches_path):
            continue

        print("Computing features for {} [{}/{}]".format(
            image_name, i + 1, len(image_names)),
              end="")

        start_time = time.time()

        descriptors_path = os.path.join(args.dataset_path, "descriptors",
                                        image_name + ".bin")
        if os.path.exists(descriptors_path):
            print(" -> skipping, already exist")
            continue

        with h5py.File(patches_path, 'r') as patches_file:
            patches31 = np.array(patches_file["patches"]).T

        if patches31.ndim != 3:
            print(" -> skipping, invalid input")
            write_matrix(descriptors_path, np.zeros((0, 128),
                                                    dtype=np.float32))
            continue

        patches = np.empty((patches31.shape[0], 32, 32), dtype=np.float32)
        patches[:, :31, :31] = patches31
        patches[:, 31, :31] = patches31[:, 30, :]
        patches[:, :31, 31] = patches31[:, :, 30]
        patches[:, 31, 31] = patches31[:, 30, 30]

        descriptors = []
        for i in range(0, patches.shape[0], args.batch_size):
            patches_batch = \
                patches[i:min(i + args.batch_size, patches.shape[0])]
            patches_batch = \
                torch.from_numpy(patches_batch[:, None]).float().cuda()
            descriptors.append(tfeat(patches_batch).detach().cpu().numpy())

        if len(descriptors) == 0:
            descriptors = np.zeros((0, 128), dtype=np.float32)
        else:
            descriptors = np.concatenate(descriptors)

        write_matrix(descriptors_path, descriptors)

        print(" in {:.3f}s".format(time.time() - start_time))