Exemplo n.º 1
0
def main():

    args = parameter.set_args()

    for i in os.listdir(args.target):
        # 数据加载
        path = os.path.join(args.target, i)
        #加载数据
        train_x, train_y = toolbox.load_data(
            os.path.join(path, 'final_train.out'))
        test_x, test_y = toolbox.load_data(os.path.join(
            path, 'final_test.out'))
        valid_x, valid_y = toolbox.load_data(
            os.path.join(path, 'final_valid.out'))
        data = np.vstack((train_x, test_x, valid_x))
        #debug
        bbrbm = BBRBM(n_visible=data.shape[1],
                      n_hidden=64,
                      learning_rate=0.01,
                      momentum=0.95,
                      use_tqdm=True)
        errs = bbrbm.fit(data, n_epoches=1000, batch_size=10)
        #保存文件
        print('model name:' + args.m_n + '_{}'.format(i))
        bbrbm.save_weights(args.m_weight + '_{}'.format(i),
                           args.m_n + '_{}'.format(i))
        np.save(args.log + '_{}', errs.format(i))
Exemplo n.º 2
0
def make_BBRBM(Image_type, image_type):
    # path and name of the data
    data_path = '../data/'
    data_name = 'TBSS_' + Image_type + '_Rawimage_249.mat'
    X_data = loadmat(data_path + data_name)
    X_data = X_data[Image_type + '_image'].astype(np.float32)

    X_s_max = X_data.max(axis=0)
    X_data /= X_s_max
    # separate validation and testing dataset
    n_train = 229
    n_val = 20
    X_train = X_data[:n_train]
    X_val = X_data[-n_val:]

    # train the model
    bbrbm = BBRBM(n_visible=X_data.shape[1],
                  n_hidden=1000,
                  learning_rate=0.01,
                  momentum=0.9,
                  use_tqdm=True)
    errs, errs_val = bbrbm.fit(X_train, X_val, n_epoches=900, batch_size=20)
    # plot the results
    plt.plot(errs)
    plt.show()
    plt.plot(errs_val)
    plt.show()
    # save the model
    save_path = '../models/rbm_' + image_type + '/'
    save_name = image_type + '_model'
    bbrbm.save_weights(filename=save_path, name=save_name)

    return bbrbm
Exemplo n.º 3
0
    def train(self):

        if self.RBM_init:
            attr_bbrbm = BBRBM(n_visible=self.attr_size,
                               n_hidden=self.embdim,
                               learning_rate=0.01,
                               momentum=0.95,
                               use_tqdm=True)
            attr_bbrbm.fit(self.graph.attrmat,
                           n_epoches=100,
                           batch_size=500,
                           shuffle=True,
                           verbose=True)
            attr_W, attr_Bv, attr_Bh = attr_bbrbm.get_weights()

        init = tf.global_variables_initializer()
        nodes_emb = np.zeros([self.struc_size, self.embdim])
        min_loss = np.inf
        with tf.Session() as sess:
            sess.run(init)
            if self.RBM_init:
                sess.run(self.attr_W[0].assign(attr_W))
                sess.run(self.attr_b[0].assign(attr_Bh))
                sess.run(self.attr_W[1].assign(tf.transpose(attr_W)))
                sess.run(self.attr_b[1].assign(attr_Bv))
            for epoch in range(self.epoch_num):
                nodes_emb_tmp = None
                loss = 0.0
                batches = self.graph.mini_batch()
                for batch_id, batch in enumerate(batches):
                    X_batch, adjmat_batch, attrX_batch, attrmat_batch = batch
                    feed_dict = {
                        self.X: X_batch,
                        self.A: attrX_batch,
                        self.adjmat: adjmat_batch,
                        self.attrmat: attrmat_batch
                    }
                    _, batch_emb, batch_loss = sess.run(
                        [self.optimizer, self.attr_node_emb, self.loss],
                        feed_dict=feed_dict)
                    loss += batch_loss
                    if nodes_emb_tmp is None:
                        nodes_emb_tmp = batch_emb
                    else:
                        nodes_emb_tmp = np.vstack((nodes_emb_tmp, batch_emb))
                if (loss < min_loss):
                    print("epoch:%3d\tloss:%.2f\tsave the best result." %
                          (epoch, loss))
                    for i, node_emb in enumerate(nodes_emb_tmp):
                        sample_node = self.graph.indices[i]
                        nodes_emb[sample_node] = node_emb
                    sio.savemat(self.embpath, {
                        'embedding': nodes_emb,
                        'label': self.graph.label
                    })
                    min_loss = loss
                else:
                    print("epoch:%3d\tloss:%.2f\t" % (epoch, loss))
Exemplo n.º 4
0
def train_new_fun(args):
    data = get_data(args.data_path, args.label_path)
    filename = 'weights_{}_{}_{}.pkl'.format(args.n_hidden, args.learning_rate, args.epochs)
    bbrbm = BBRBM(n_visible=data.shape[1], n_hidden=args.n_hidden, learning_rate=args.learning_rate,
                  momentum=args.momentum, use_tqdm=True)
    bbrbm.fit(data, n_epoches=args.epochs, batch_size=args.batch_size)
    W, vb, hb = bbrbm.get_weights()
    print(get_likelihood(data, W, vb, hb))
    pkl.dump([W, vb, hb], open(filename, 'wb'))
Exemplo n.º 5
0
def train_rbm(n_vis,
              n_hid,
              learning_rate=0.01,
              momentum=0.95,
              n_epoches=30,
              batch_size=100):
    rbm = BBRBM(n_vis,
                n_hid,
                learning_rate=learning_rate,
                momentum=momentum,
                use_tqdm=True)
    rbm.fit(mnist.train.images, n_epoches=n_epoches, batch_size=batch_size)
    return rbm
Exemplo n.º 6
0
def main():
    rbm_1 = BBRBM(n_visible=32, n_hidden=64)
    x = tf.convert_to_tensor(np.random.random((1, 32)), dtype=tf.float32)

    with open('rbm.pickle', 'wb') as f:
        pickle.dump(rbm_1, f)

    with open('rbm.pickle', 'rb') as f:
        rbm_2 = pickle.load(f)

    y_1 = rbm_1.compute_hidden(x)
    y_2 = rbm_2.compute_hidden(x)

    assert np.allclose(y_1.numpy(), y_2.numpy())
Exemplo n.º 7
0
def dbn(rbm_hidden_num,
        rbm_visible_size,
        rbm_hidden_size,
        rbm_x,
        rbm_type='GBRBM'):
    weights = []
    biases = []
    for i in range(rbm_hidden_num):
        # 训练rbm
        if i == 0 and rbm_type == 'GBRBM':
            rbm = GBRBM(n_visible=rbm_visible_size,
                        n_hidden=rbm_hidden_size,
                        learning_rate=0.01,
                        momentum=0.95,
                        use_tqdm=False)
        else:
            rbm = BBRBM(n_visible=rbm_visible_size,
                        n_hidden=rbm_hidden_size,
                        learning_rate=0.01,
                        momentum=0.95,
                        use_tqdm=False)
        errs = rbm.fit(rbm_x, n_epoches=10, batch_size=100, verbose=True)
        rbm_x = rbm.transform(rbm_x)
        rbm_w, vb, rbm_b = rbm.get_weights()
        rbm_visible_size = rbm_hidden_size
        weights.append(rbm_w)
        biases.append(rbm_b)
    return weights, biases
Exemplo n.º 8
0
def main():
    logging.basicConfig(level=logging.INFO)

    (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

    x_train = x_train / 255
    x_test = x_test / 255

    dataset = tf.data.Dataset.from_tensor_slices(x_train.reshape(-1, 28 * 28).astype(np.float32))
    dataset = dataset.shuffle(1024, reshuffle_each_iteration=True)

    rbm = BBRBM(n_visible=28 * 28, n_hidden=64)
    rbm.fit(dataset, epoches=100, batch_size=10)

    for i in np.random.choice(np.arange(x_test.shape[0]), 5, replace=False):
        x = x_test[i]
        x_tensor = tf.convert_to_tensor(x.reshape(1, 28 * 28), dtype=tf.float32)
        x_reconstructed_tensor = rbm.reconstruct(x_tensor)
        x_reconstructed = x_reconstructed_tensor.numpy().reshape(28, 28)

        Image.fromarray((x * 255).astype(np.uint8)).save(f'{i}_original.png')
        Image.fromarray((x_reconstructed * 255).astype(np.uint8)).save(f'{i}_reconstructed.png')
Exemplo n.º 9
0
def DBN_DNN(inp, nClasses, depth, width, batch_size=2048):
    RBMs = []
    weights = []
    bias = []
    # batch_size = inp.shape
    nEpoches = 5
    if len(inp.shape) == 3:
        inp = inp.reshape((inp.shape[0] * inp.shape[1], inp.shape[2]))
    sigma = np.std(inp)
    # sigma = 1
    rbm = GBRBM(n_visible=inp.shape[-1],
                n_hidden=width,
                learning_rate=0.002,
                momentum=0.90,
                use_tqdm=True,
                sample_visible=True,
                sigma=sigma)
    rbm.fit(inp, n_epoches=15, batch_size=batch_size, shuffle=True)
    RBMs.append(rbm)
    for i in range(depth - 1):
        print 'training DBN layer', i
        rbm = BBRBM(n_visible=width,
                    n_hidden=width,
                    learning_rate=0.02,
                    momentum=0.90,
                    use_tqdm=True)
        for e in range(nEpoches):
            batch_size *= 1 + (e * 0.5)
            n_batches = (inp.shape[-2] / batch_size) + (
                1 if inp.shape[-2] % batch_size != 0 else 0)
            for j in range(n_batches):
                stdout.write("\r%d batch no %d/%d epoch no %d/%d" %
                             (int(time.time()), j + 1, n_batches, e, nEpoches))
                stdout.flush()
                b = np.array(inp[j * batch_size:min((j + 1) *
                                                    batch_size, inp.shape[0])])
                for r in RBMs:
                    b = r.transform(b)
                rbm.partial_fit(b)
        RBMs.append(rbm)
    for r in RBMs:
        (W, _, Bh) = r.get_weights()
        weights.append(W)
        bias.append(Bh)
    model = mlp1(x_train.shape[1], nClasses, depth - 1, width)
    print len(weights), len(model.layers)
    assert len(weights) == len(model.layers) - 1
    for i in range(len(weights)):
        W = [weights[i], bias[i]]
        model.layers[i].set_weights(W)
    return model
Exemplo n.º 10
0
def train_on_fun(args):
    data = get_data(args.data_path, args.label_path)
    filename = 'trained_on_{}_'.format(args.epochs) + args.param_path
    params = pkl.load(open(args.param_path, 'rb'))
    W, vb, hb = params[0], params[1], params[2]
    bbrbm = BBRBM(n_visible=data.shape[1], n_hidden=W.shape[1], learning_rate=args.learning_rate,
                  momentum=args.momentum, use_tqdm=True)
    bbrbm.set_weights(W, vb, hb)
    bbrbm.fit(data, n_epoches=args.epochs, batch_size=args.batch_size)
    W, vb, hb = bbrbm.get_weights()
    print(get_likelihood(data, W, vb, hb))
    pkl.dump([W, vb, hb], open(filename, 'wb'))
def make_BBRBM_kfold(train_data, valid_data, num_visible, num_hidden, num_epoches, k, save_path, layer_num):
     ##############% Transform the data  with Bernoulli restricted Boltzmann machine
    bbrbm = BBRBM(n_visible=num_visible, n_hidden = num_hidden, learning_rate = 0.001, momentum=0.9, use_tqdm=True)    
    foldName = str(k)+'_fold/'+'layer'+str(layer_num)+'/'
    createFolder(save_path+foldName)
    if os.listdir(save_path+foldName):
        bbrbm.load_weights(filename = save_path+foldName, name = 'layer'+str(layer_num)+'_model')
    else : 
        errs,errs_val = bbrbm.fit(train_data, valid_data, n_epoches = num_epoches, batch_size=20) 
        plt.plot(errs)
        plt.show()
        plt.savefig(save_path+foldName+'train.png')
        plt.plot(errs_val)
        plt.savefig(save_path+foldName+'val.png')
        plt.show()
        bbrbm.save_weights(filename = save_path+foldName, name = 'layer'+str(layer_num)+'_model')
    transform_data_train = np.zeros([train_data.shape[0] , num_hidden]).astype(np.float32)
    for i in range(0,train_data.shape[0]):
        transform_data_train[i,:] = bbrbm.transform(train_data[i,:].reshape(1,-1))
    
    transform_data_val = bbrbm.transform(valid_data)      
    return transform_data_train, transform_data_val    
Exemplo n.º 12
0
def make_BBRBM_layer2(train, validation, num_visible, num_hidden, num_epoches,
                      lr, save_path):
    bbrbm = BBRBM(n_visible=num_visible,
                  n_hidden=num_hidden,
                  learning_rate=lr,
                  momentum=0.9,
                  use_tqdm=True)
    if os.listdir(save_path):
        bbrbm.load_weights(filename=save_path, name='fusion_layer')
    else:
        errs, errs_val = bbrbm.fit(train,
                                   validation,
                                   n_epoches=num_epoches,
                                   batch_size=20)
        plt.plot(errs)
        plt.show()
        plt.plot(errs_val)
        plt.show()


#        bbrbm.save_weights(filename=save_path, name='fusion_layer')
    transform_train = bbrbm.transform(train)
    transform_valid = bbrbm.transform(validation)
    return transform_train, transform_valid
import numpy as np
#import pylab as pl
import matplotlib.pyplot as plt
from tfrbm import BBRBM, GBRBM
#from tensorflow.examples.tutorials.mnist import input_data
import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
mnist_images = mnist.train.images

bbrbm = BBRBM(n_visible=784,
              n_hidden=500,
              learning_rate=1.0,
              momentum=0.0,
              use_tqdm=True)
#bbrbm = BBRBM(n_visible=64, n_hidden=32, learning_rate=0.01, momentum=0.95, use_tqdm=True)

errs = bbrbm.fit(mnist_images, n_epoches=1, batch_size=100)
plt.plot(errs)
plt.show()
    plt.locator_params(axis="y", nbins=1)
    plt.show()


#labels pixels
accu = [0]
num_avg = 200
n_data = 100  #mnist_images1.shape[0]
print("accuracy", accu)
t1 = np.zeros(10)

print("minist test size", mnist_images1.shape)
#create the BM
bbrbm = BBRBM(n_visible=794,
              n_hidden=64,
              learning_rate=0.01,
              momentum=0.95,
              use_tqdm=True)

#load the saved weights
filename = 'weights_class5kep'
name = 'bbrbm_class5kep'
bbrbm.load_weights(filename, name)

#Test the Reconstruction of the RBM
IMAGE = 20  #26, 31 works well (which is a 6)
#image = mnist_images1[IMAGE]

mask_a_or = np.ones(784)
mask_c_or = np.zeros(784)
#prepare first mask
Exemplo n.º 15
0
def dbn(first_layer_hidden_nodes,
        second_layer_hidden_nodes,
        learning_rate,
        epoches,
        third_layer_hidden_nodes=0,
        batch_size=128):

    # ---------------------- PRE-TRAINING --------------------

    # gets datasets: x_{train,test} are np arrays
    # y_{train,test} are categorical dstributions
    # over a digit
    x_train, x_test, y_train, y_test = get_datasets()

    # ---------------------- FIRST LAYER --------------------

    # Generate weights ~ N(mean =0, stdev =0.01) & zero biases
    weight_matrix = generate_weight_matrix(x_train.shape[1],
                                           first_layer_hidden_nodes)
    visible_biases = np.zeros(shape=(x_train.shape[1]))
    hidden_biases = np.zeros(shape=(first_layer_hidden_nodes))

    # initialize Restricted Boltzman Machine
    first_bbrbm = BBRBM(
        n_visible=x_train.shape[1],
        n_hidden=first_layer_hidden_nodes,
        learning_rate=learning_rate,
        momentum=0,
        # momentum=0.95,
        use_tqdm=True)

    first_bbrbm.set_weights(weight_matrix, visible_biases, hidden_biases)

    # fit model
    first_bbrbm.fit(data_x=x_train,
                    validation_data_x=x_test,
                    n_epoches=epoches,
                    batch_size=batch_size)

    rbm_first_layer_weight_matrix = first_bbrbm.get_weight_matrix()
    rbm_first_layer_hidden_layer_biases = first_bbrbm.get_hidden_biases()

    first_output = np.dot(x_train, rbm_first_layer_weight_matrix)

    for i in range(first_output.shape[0]):

        first_output[i, :] += rbm_first_layer_hidden_layer_biases

        for j in range(first_output.shape[1]):
            # sigmoid(relu(x))
            first_output[i, j] = sigmoid(relu(first_output[i, j]))

    first_test_output = np.dot(x_test, rbm_first_layer_weight_matrix)

    for i in range(first_test_output.shape[0]):

        first_test_output[i, :] += rbm_first_layer_hidden_layer_biases

        for j in range(first_test_output.shape[1]):
            # sigmoid(relu(x))
            first_test_output[i, j] = sigmoid(relu(first_test_output[i, j]))

    # ---------------------- SECOND LAYER --------------------

    # Generate weights ~ N(mean =0, stdev =0.01) & zero biases
    weight_matrix = generate_weight_matrix(first_layer_hidden_nodes,
                                           second_layer_hidden_nodes)
    visible_biases = np.zeros(shape=(first_layer_hidden_nodes))
    hidden_biases = np.zeros(shape=(second_layer_hidden_nodes))

    # initialize Restricted Boltzman Machine
    second_bbrbm = BBRBM(
        n_visible=first_layer_hidden_nodes,
        n_hidden=second_layer_hidden_nodes,
        learning_rate=learning_rate,
        momentum=0,
        # momentum=0.95,
        use_tqdm=True)

    second_bbrbm.set_weights(weight_matrix, visible_biases, hidden_biases)

    # fit model
    second_bbrbm.fit(data_x=first_output,
                     validation_data_x=first_test_output,
                     n_epoches=epoches,
                     batch_size=batch_size)

    rbm_second_layer_weight_matrix = second_bbrbm.get_weight_matrix()
    rbm_second_layer_hidden_layer_biases = second_bbrbm.get_hidden_biases()

    second_output = np.dot(first_output, rbm_second_layer_weight_matrix)

    for i in range(second_output.shape[0]):

        second_output[i, :] += rbm_second_layer_hidden_layer_biases

        for j in range(second_output.shape[1]):
            # sigmoid(relu(x))
            second_output[i, j] = sigmoid(relu(second_output[i, j]))

    second_test_output = np.dot(first_test_output,
                                rbm_second_layer_weight_matrix)

    for i in range(second_test_output.shape[0]):

        second_test_output[i, :] += rbm_second_layer_hidden_layer_biases

        for j in range(second_test_output.shape[1]):
            # sigmoid(relu(x))
            second_test_output[i, j] = sigmoid(relu(second_test_output[i, j]))

    # ---------------------- THIRD LAYER --------------------

    if third_layer_hidden_nodes > 0:

        # Generate weights ~ N(mean =0, stdev =0.01) & zero biases
        weight_matrix = generate_weight_matrix(second_layer_hidden_nodes,
                                               third_layer_hidden_nodes)
        visible_biases = np.zeros(shape=(second_layer_hidden_nodes))
        hidden_biases = np.zeros(shape=(third_layer_hidden_nodes))

        # initialize Restricted Boltzman Machine
        third_bbrbm = BBRBM(
            n_visible=second_layer_hidden_nodes,
            n_hidden=third_layer_hidden_nodes,
            learning_rate=learning_rate,
            momentum=0,
            # momentum=0.95,
            use_tqdm=True)

        third_bbrbm.set_weights(weight_matrix, visible_biases, hidden_biases)

        # fit model
        third_bbrbm.fit(data_x=second_output,
                        validation_data_x=second_test_output,
                        n_epoches=epoches,
                        batch_size=batch_size)

        rbm_third_layer_weight_matrix = third_bbrbm.get_weight_matrix()
        rbm_third_layer_hidden_layer_biases = third_bbrbm.get_hidden_biases()

        third_output = np.dot(second_output, rbm_third_layer_weight_matrix)

        for i in range(third_output.shape[0]):

            third_output[i, :] += rbm_third_layer_hidden_layer_biases

            for j in range(third_output.shape[1]):
                # sigmoid(relu(x))
                third_output[i, j] = sigmoid(relu(third_output[i, j]))

        third_test_output = np.dot(second_test_output,
                                   rbm_third_layer_weight_matrix)

        for i in range(third_test_output.shape[0]):

            third_test_output[i, :] += rbm_third_layer_hidden_layer_biases

            for j in range(third_test_output.shape[1]):
                # sigmoid(relu(x))
                third_test_output[i, j] = sigmoid(relu(third_test_output[i,
                                                                         j]))

        # ------------------------ CLASSIFICATION ---------------------

        sgd = optimizers.SGD(lr=0.3, decay=0, momentum=0, nesterov=True)
        model = Sequential()
        model.add(
            Dense(10,
                  input_dim=third_output.shape[1],
                  activation="softmax",
                  kernel_initializer=keras.initializers.RandomNormal(
                      mean=0.0, stddev=0.01),
                  bias_initializer='zeros'))
        model.compile(optimizer=sgd,
                      loss='mean_squared_error',
                      metrics=['accuracy'],
                      loss_weights=None,
                      sample_weight_mode=None,
                      weighted_metrics=None,
                      target_tensors=None)

        earlyStopping = keras.callbacks.EarlyStopping(monitor='val_loss',
                                                      min_delta=0,
                                                      patience=0,
                                                      verbose=0,
                                                      mode='auto')

        model.fit(third_output,
                  np.asarray(y_train),
                  batch_size=batch_size,
                  epochs=epoches,
                  verbose=1,
                  shuffle=True,
                  callbacks=[earlyStopping],
                  validation_data=(third_test_output, np.asarray(y_test)))

        score = model.evaluate(third_test_output,
                               np.asarray(y_test),
                               verbose=1)
        print('Test loss:', score[0])
        print('Test accuracy:', score[1])

        return score[1]

    else:

        # ------------------------ CLASSIFICATION ---------------------

        sgd = optimizers.SGD(lr=0.3, decay=0, momentum=0, nesterov=True)
        model = Sequential()
        model.add(
            Dense(10,
                  input_dim=second_output.shape[1],
                  activation="softmax",
                  kernel_initializer=keras.initializers.RandomNormal(
                      mean=0.0, stddev=0.01),
                  bias_initializer='zeros'))
        model.compile(optimizer=sgd,
                      loss='mean_squared_error',
                      metrics=['accuracy'],
                      loss_weights=None,
                      sample_weight_mode=None,
                      weighted_metrics=None,
                      target_tensors=None)

        earlyStopping = keras.callbacks.EarlyStopping(monitor='val_loss',
                                                      min_delta=0,
                                                      patience=0,
                                                      verbose=0,
                                                      mode='auto')

        model.fit(second_output,
                  np.asarray(y_train),
                  batch_size=batch_size,
                  epochs=epoches,
                  verbose=1,
                  shuffle=True,
                  callbacks=[earlyStopping],
                  validation_data=(second_test_output, np.asarray(y_test)))

        score = model.evaluate(second_test_output,
                               np.asarray(y_test),
                               verbose=1)
        print('Test loss:', score[0])
        print('Test accuracy:', score[1])

        return score[1]
Exemplo n.º 16
0
gbrbm.save_weights(filename=gb_filename, name=gb_name)

#begin pretraining the first  Bernoulli-Bernoulli RBM
bb_input_data_1 = gbrbm.transform(input_data)
bb_input_data_1 = np.array(bb_input_data_1)
#print(bb_input_data_1.shape)

bb_n_visible_1 = bb_input_data_1.shape[1]
bb_n_hid_1 = 2048
bb_learning_rate_1 = 0.01
bb_momentum_1 = 0.95
bb_err_function_1 = 'mse'

bbrbm_1 = BBRBM(n_visible=bb_n_visible_1,
                n_hidden=bb_n_hid_1,
                learning_rate=bb_learning_rate_1,
                momentum=bb_momentum_1,
                err_function=bb_err_function_1,
                use_tqdm=False)

bb_n_epoches_1 = 10
bb_batch_size_1 = 128

errs_1 = bbrbm_1.fit(data_x=bb_input_data_1,
                     n_epoches=bb_n_epoches_1,
                     batch_size=bb_batch_size_1,
                     shuffle=True,
                     verbose=True)

bb_filename_1 = 'pretrain_models/bbrbm_1.ckpt'
bb_name_1 = 'rbm'
bbrbm_1.save_weights(filename=bb_filename_1, name=bb_name_1)
Exemplo n.º 17
0
def main():
    logging.basicConfig(level=logging.INFO)

    (x_train, _), (x_test, _) = tf.keras.datasets.mnist.load_data()

    x_train = x_train / 255
    x_test = x_test / 255

    dataset = tf.data.Dataset.from_tensor_slices(
        x_train.reshape(-1, 28 * 28).astype(np.float32))
    dataset = dataset.shuffle(1024, reshuffle_each_iteration=True)

    rbm_1 = BBRBM(n_visible=28 * 28, n_hidden=64)
    rbm_2 = BBRBM(n_visible=64, n_hidden=32)
    rbm_3 = BBRBM(n_visible=32, n_hidden=2)

    epoches = 100
    batch_size = 10

    rbm_1.fit(dataset, epoches=epoches, batch_size=batch_size)
    dataset_2 = transform_dataset(rbm_1, dataset)

    rbm_2.fit(dataset_2, epoches=epoches, batch_size=batch_size)
    dataset_3 = transform_dataset(rbm_2, dataset_2)

    rbm_3.fit(dataset_3, epoches=epoches, batch_size=batch_size)

    def encode(x):
        hidden_1 = rbm_1.compute_hidden(x)
        hidden_2 = rbm_2.compute_hidden(hidden_1)
        hidden_3 = rbm_3.compute_hidden(hidden_2)

        return hidden_3

    dataset_test = tf.data.Dataset.from_tensor_slices(
        x_test.reshape(-1, 28 * 28).astype(np.float32))
    encoded_test = []

    for batch in dataset_test.batch(2048):
        batch_encoded_tensor = encode(batch)
        batch_encoded = batch_encoded_tensor.numpy()
        encoded_test.append(batch_encoded)

    encoded_test = np.vstack(encoded_test)
    plt.scatter(encoded_test[:, 0], encoded_test[:, 1], alpha=0.5)
    plt.savefig('example.png')
Exemplo n.º 18
0
#test to see if corretly added labels
# create figure
fig = plt.figure(figsize=(10, 10))

# setting values to rows and column variables
rows = 2
columns = 1
fig.add_subplot(rows, columns, 2)
plt.imshow(mnist_labeled[6][10:794].reshape(28,28))#new_image.reshape(29,29)
fig.add_subplot(rows, columns, 1)
plt.imshow(mnist_labeled[6][0:10].reshape(1,-1))
plt.locator_params(axis="x", nbins=9)
plt.show()
#for m in range(19):
   # show_digit(mnist_labeled[m].reshape(28, 28))
ep = np.array([3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,13000,15000,16000,17000,18000,19000,20000])#700, 800, 900, 1000, 1100, 1200,1300,1400, 1500,1600,1700]


bbrbm = BBRBM(n_visible=794, n_hidden=64, learning_rate=0.008, momentum=0.95, use_tqdm=True)
print("learing rate is ", 0.008)
#for i in range(ep.size):
err = bbrbm.fit(mnist_labeled, n_epoches=20001, batch_size=10)
    #save the weights
    #filename = fname[i] #'weights_class600ep'
    #name1 = name[i] #'bbrbm_class600ep'
    #bbrbm.save_weights(filename,name1)

#weights_class600ep = lr = 0.01 X
#weights_class600ep005 = lr = 0.005  X
#weights_class600ep002 = lr = 0.002  X
#weights_class600ep = lr = 0.008 X
# -*- coding: utf-8 -*-
"""
Created on Fri Dec  1 14:41:33 2017

@author: rahul.ghosh
"""

import numpy as np
import matplotlib.pyplot as plt
from tfrbm import BBRBM, GBRBM
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
mnist_images = mnist.train.images

bbrbm = BBRBM(n_visible=784, n_hidden=64, learning_rate=0.01, momentum=0.95, use_tqdm=True)
errs = bbrbm.fit(mnist_images, n_epoches=30, batch_size=10)
plt.plot(errs)
plt.show()
Exemplo n.º 20
0
#Hi there, Can you see this
import numpy as np
import matplotlib.pyplot as plt
import os, sys, inspect
sys.path.insert(1, os.path.join(sys.path[0], '..'))
from tfrbm import BBRBM, GBRBM
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
mnist_images = mnist.train.images
X_train = np.where(mnist_images > 0, 1, 0)  #binrize the pixels

bbrbm = BBRBM(n_visible=784,
              n_hidden=64,
              learning_rate=0.01,
              momentum=0.95,
              use_tqdm=True)
errs = bbrbm.fit(X_train, n_epoches=50, batch_size=10)
plt.plot(errs)
plt.show()

############################
#Test the Reconstruction of the RBM
IMAGE = 1
image = mnist_images[IMAGE]
#crop the imag
#crop dimentions
x = 6
y = 6
a = image.reshape(28, 28)
img = a[0:16, 0:28]  #crop the image
Exemplo n.º 21
0
for i in range(19):
    b = np.pad(mnist_images1[i].reshape(28, 28), 1, pad_with, padder=0)#add contour of zeros around the image
    x = np.where(mnist.train.labels[i] == 1)
    #show_digit(mnist_images1[2].reshape(28, 28))
    x1 = list(x) # change to list to add 20 offset
    x1[0] = x1[0] +20
    x =tuple(x1) #revert back to tuple
   # print("x is", x[0])
   # x[0] = x[0]+[20]
    b[x,0] = 1 # add the label coressponding to the image on the right most clolumn [0..10] ,+20 means that we want to have the labels on pixels [20...29]
    mnist_labeled[i] = b.flatten() #convert the image to 1D and store it 
#test to see if corretly added labels
show_digit(mnist_labeled[5].reshape(30,30))#new_image.reshape(29,29)

for m in range(19):
    show_digit(mnist_labeled[20].reshape(30, 30))


#create the BM
bbrbm = BBRBM(n_visible=900, n_hidden=64, learning_rate=0.01, momentum=0.95, use_tqdm=True)
err = bbrbm.fit(mnist_labeled, n_epoches=100000, batch_size=10)
#save the weights
filename = 'weights_class'
name = 'bbrbm_class'
bbrbm.save_weights(filename,name)





def rbm(hidden_nodes, learning_rate, epoches, batch_size=128):

    # ---------------------- PRE-TRAINING --------------------

    # gets datasets: x_{train,test} are np arrays
    # y_{train,test} are categorical dstributions
    # over a digit
    x_train, x_test, y_train, y_test = get_datasets()

    # Generate weights ~ N(mean =0, stdev =0.01) & zero biases
    weight_matrix = generate_weight_matrix(x_train.shape[1], hidden_nodes)
    visible_biases = np.zeros(shape=(x_train.shape[1]))
    hidden_biases = np.zeros(shape=(hidden_nodes))

    # initialize Restricted Boltzman Machine
    bbrbm = BBRBM(
        n_visible=x_train.shape[1],
        n_hidden=hidden_nodes,
        learning_rate=learning_rate,
        momentum=0,
        # momentum=0.95,
        use_tqdm=True)

    bbrbm.set_weights(weight_matrix, visible_biases, hidden_biases)

    # fit model
    bbrbm.fit(data_x=x_train,
              validation_data_x=x_test,
              n_epoches=epoches,
              batch_size=batch_size)

    rbm_weight_matrix = bbrbm.get_weight_matrix()
    rbm_hidden_layer_biases = bbrbm.get_hidden_biases()

    # TODO: Import commands for comparative representation of
    # TODO: original input vs reconstruction input

    # generate output that will be used as input in the classification stage
    output = np.dot(x_train, rbm_weight_matrix)

    for i in range(output.shape[0]):

        output[i, :] += rbm_hidden_layer_biases

        for j in range(output.shape[1]):

            # my_sigmoid(relu(x))
            output[i, j] = my_sigmoid(relu(output[i, j]))

    test_output = np.dot(x_test, rbm_weight_matrix)

    for i in range(test_output.shape[0]):

        test_output[i, :] += rbm_hidden_layer_biases

        for j in range(test_output.shape[1]):
            # my_sigmoid(relu(x))
            test_output[i, j] = my_sigmoid(relu(test_output[i, j]))

    # ------------------------ CLASSIFICATION ---------------------

    sgd = optimizers.SGD(lr=0.3, decay=0, momentum=0, nesterov=True)
    model = Sequential()
    model.add(
        Dense(10,
              input_dim=output.shape[1],
              activation="softmax",
              kernel_initializer=keras.initializers.RandomNormal(mean=0.0,
                                                                 stddev=0.01),
              bias_initializer='zeros'))
    model.compile(optimizer=sgd,
                  loss='mean_squared_error',
                  metrics=['accuracy'],
                  loss_weights=None,
                  sample_weight_mode=None,
                  weighted_metrics=None,
                  target_tensors=None)

    earlyStopping = keras.callbacks.EarlyStopping(monitor='val_loss',
                                                  min_delta=0,
                                                  patience=0,
                                                  verbose=0,
                                                  mode='auto')

    model.fit(output,
              np.asarray(y_train),
              batch_size=batch_size,
              epochs=epoches,
              verbose=1,
              shuffle=True,
              callbacks=[earlyStopping],
              validation_data=(test_output, y_test))

    score = model.evaluate(test_output, np.asarray(y_test), verbose=1)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

    return score[1]
Exemplo n.º 23
0
    abnormal_code = "11"
    train_data_list, label_list = word2vecCNN.embedding_data(abnormal_code)
    train_x = np.reshape(train_data_list, (len(train_data_list), -1))[:10]
    train_y = np.array(label_list)[:10]
    print("train_data_list.shape", train_x.shape)
    print("label_list.shape", train_y.shape)
    test_x = train_x[7:]
    test_y = train_y[7:]

    print("test_data_list.shape", test_x.shape)
    print("label_list.shape", test_y.shape)

    # RBM
    bbrbm = BBRBM(n_visible=train_x.shape[1],
                  n_hidden=640,
                  learning_rate=0.01,
                  momentum=0.95,
                  use_tqdm=True)
    errs = bbrbm.fit(train_x, n_epoches=2, batch_size=10)
    doc_vec = bbrbm.transform(train_x.reshape(train_x.shape[0], -1))
    # doc_vec = doc_vec.reshape(train_data_list.shape[0],10,-1)
    print("doc_vec.shape", doc_vec.shape)

    # tensorflow placeholders
    tf_x = tf.placeholder(
        tf.float32, [None, TIME_STEP * INPUT_SIZE])  # shape(batch, 64*10)
    image = tf.reshape(
        tf_x, [-1, TIME_STEP, INPUT_SIZE])  # (batch, height, width, channel)
    tf_y = tf.placeholder(tf.int32, [None, 2])  # input y

    # RNN
Exemplo n.º 24
0
        weights = []
        biases = []

        with tf.device('/gpu:%d' % gpu_device):
            for i in range(rbm_hidden_num):
                # 训练rbm
                if i == 0 and rbm_type == 'GBRBM':
                    rbm = GBRBM(n_visible=rbm_visible_size,
                                n_hidden=rbm_hidden_size,
                                learning_rate=0.01,
                                momentum=0.95,
                                use_tqdm=False)
                else:
                    rbm = BBRBM(n_visible=rbm_visible_size,
                                n_hidden=rbm_hidden_size,
                                learning_rate=0.01,
                                momentum=0.95,
                                use_tqdm=False)
                errs = rbm.fit(rbm_x,
                               n_epoches=10,
                               batch_size=100,
                               verbose=True)
                rbm_x = rbm.transform(rbm_x)
                rbm_W, vb, rbm_b = rbm.get_weights()
                rbm_visible_size = rbm_hidden_size
                weights.append(rbm_W)
                biases.append(rbm_b)

            with tf.name_scope('dbn'):
                dbn_x = tf.placeholder(tf.float32,
                                       [None, time_step * input_size],
Exemplo n.º 25
0
        # cv2.imshow('image',image)
        # cv2.waitKey(0)
        Images.append(image)

    Images = np.array(Images, np.int64)

    print(Images.shape)
    print(Images.dtype)
    # Images=Images[:,:,:,np.newaxis]
    return Images


if __name__ == '__main__':
    Images = get_data(
        '/home/cooper/PycharmProjects/zuoye/math_theory_work/作业2/images')
    mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
    mnist_images = mnist.train.images

    bbrbm = BBRBM(n_visible=914 * 990 / 4,
                  n_hidden=500,
                  learning_rate=0.001,
                  momentum=0.95,
                  use_tqdm=True)
    errs = bbrbm.fit(Images, n_epoches=30, batch_size=10)
    plt.plot(errs)
    # plt.show()
    # model=Get_model()
    # model.compile(optimizer='sgd',loss=sparse_categorical_crossentropy,metrics=['accuracy'])
    # model.fit(Images,Images,batch_size=1,epochs=10,validation_split=0.2,callbacks=[TensorBoard('/home/cooper/PycharmProjects/zuoye/math_theory_work/logs')])
    #
Exemplo n.º 26
0
def run(first_hidden, second_hidden, learning_rate, epochs, batch_size):

    x_train, x_test, y_train, y_test = get_datasets()

    # ------------------FIRST HIDDEN-------------------

    weight_matrix = generate_weight_matrix(x_train.shape[1], hidden)
    visible_biases = np.zeros(shape=(784))
    hidden_biases = np.zeros(shape=(first_hidden))

    bbrbm = BBRBM(
        n_visible=784,
        n_hidden=first_hidden,
        learning_rate=learning_rate,
        momentum=0,
        # momentum=0.95,
        use_tqdm=True)

    bbrbm.set_weights(weight_matrix, visible_biases, hidden_biases)
    errs = bbrbm.fit(x_train, n_epoches=epochs, batch_size=batch_size)

    first_weight_matrix = np.asarray(bbrbm.get_weight_matrix())
    first_visible_biases = bbrbm.get_visible_biases()
    first_hidden_biases = bbrbm.get_hidden_biases()

    first_output = np.dot(x_test, weight_matrix)

    for i in range(first_output.shape[0]):

        first_output[i, :] += first_hidden_biases

        for j in range(first_output.shape[1]):

            # sigmoid(relu(x))
            first_output[i, j] = sigmoid(np.max(0, first_output[i, j]))

    # ------------------SECOND HIDDEN-------------------

    bbrbm_second = BBRBM(
        n_visible=first_hidden,
        n_hidden=784,
        learning_rate=learning_rate,
        momentum=0,
        # momentum=0.95,
        use_tqdm=True)

    trained_outputs = np.ndarray(shape=(x_train.shape[0], x_train.shape[1]))
    for i in range(trained_outputs.shape[0]):

        trained_outputs[i, :] = bbrbm.reconstruct(x_train[i].reshape(1, -1))

    sgd = optimizers.SGD(lr=0.3, decay=0, momentum=0, nesterov=True)
    model = Sequential()
    model.add(
        Dense(10,
              input_dim=784,
              activation="softmax",
              kernel_initializer=keras.initializers.RandomNormal(mean=0.0,
                                                                 stddev=0.01),
              bias_initializer='zeros'))
    model.compile(optimizer=sgd,
                  loss='mean_squared_error',
                  metrics=['accuracy'],
                  loss_weights=None,
                  sample_weight_mode=None,
                  weighted_metrics=None,
                  target_tensors=None)

    earlyStopping = keras.callbacks.EarlyStopping(monitor='val_loss',
                                                  min_delta=0,
                                                  patience=0,
                                                  verbose=0,
                                                  mode='auto')

    model.fit(trained_outputs,
              np.asarray(y_train),
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              shuffle=True,
              callbacks=[earlyStopping],
              validation_data=(x_test, y_test))

    score = model.evaluate(x_test, np.asarray(y_test), verbose=1)
    print('Test loss:', score[0])
    print('Test accuracy:', score[1])

    # vis(x_train, trained_outputs, 20)

    trained_outputs = np.dot(x_train, weight_matrix)
    for i in range(trained_outputs.shape[0]):

        trained_outputs[i, :] += hidden_biases

    debug = 0

    # test = np.dot(x_test, weight_matrix)
    #
    # preds = []
    # for i in range(test.shape[0]):
    #
    #     test[i,:]+=hidden_biases

    # output_weight_matrix = generate_output_weight_matrix(test.shape[1])
    # sgd = optimizers.SGD(lr=0.01, decay=0, momentum=0, nesterov=True)
    # model = Model(inputs=test, outputs=y_test)

    model.compile(optimizer=sgd,
                  loss='mean_squared_error',
                  metrics=['accuracy'],
                  loss_weights=None,
                  sample_weight_mode=None,
                  weighted_metrics=None,
                  target_tensors=None)

    debug = 0
Exemplo n.º 27
0
# fix ssl error when downloading files
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

# %%
# read mnist data
mnist = input_data.read_data_sets('../../data/MNIST', one_hot=True)
mnist_train_images = mnist.train.images
mnist_test_images = mnist.test.images
mnist_test_labels = mnist.test.labels

# %%
# fit Bernoulli-Bernoulli RBM model
bbrbm = BBRBM(n_visible=784,
              n_hidden=64,
              learning_rate=0.01,
              momentum=0.95,
              use_tqdm=True)

bbrbm_errs = bbrbm.fit(mnist_train_images, n_epoches=30, batch_size=10)

# %%
# sava trained RBM model
bbrbm.save_weights('../../output/cn/2018-01-17-ising-hopfield-and-rbm/mnist-bbrbm', 'default')
# bbrbm.load_weights('../../output/cn/2018-01-17-ising-hopfield-and-rbm/mnist-bbrbm', 'default')

# %%
# plot bbrbm errors
plt.style.use('ggplot')
plt.plot(bbrbm_errs)
plt.savefig('../../static/cn/2018-01-17-ising-hopfield-and-rbm/bbrbm-mnist-errs.png', bbox_inches='tight')
Exemplo n.º 28
0
import matplotlib.pyplot as plt
from tfrbm import BBRBM, GBRBM, RegRBM

data = np.array([[1, 1, 0], [0, 1, 1]], float)

num_sim = 5

for x in range(num_sim):
    for std in [0.1, 0.2]:

        print('###' + str(x) + '###')
        print('Xavier weight init')
        bbrbm_xavier = BBRBM(n_visible=3,
                             n_hidden=2,
                             learning_rate=0.05,
                             momentum=0,
                             use_tqdm=False,
                             init_weight_scheme='xavier',
                             rbmName='Xavier weight init',
                             stddev_par=std)
        # print(bbrbm_xavier.get_weights())
        errs = bbrbm_xavier.fit(data, n_epoches=400, batch_size=1)
        # plt.plot(errs)
        # plt.show()
        # print(bbrbm_xavier.get_weights())
        bbrbm_xavier.export_to_csv()

        # print('Uniform one weight init')
        # bbrbm_ones = BBRBM(n_visible=3, n_hidden=2, learning_rate=0.05, momentum=0, use_tqdm=False, init_weight_scheme ='ones', rbmName = 'Uniform one weight init')
        # # print(bbrbm_ones.get_weights())
        # errs = bbrbm_ones.fit(data, n_epoches=400, batch_size=1)
        # # plt.plot(errs)