Exemplo n.º 1
0
def test_onehot():
    x = tf.constant(np.array([[1], [3]], dtype='float32'))
    onehot_t = modeling.onehot(x, 10)
    init()
    onehot = sess.run(onehot_t)
    assert onehot.shape == (2, 10)
    assert onehot[0][1] == 1
    assert onehot[1][3] == 1
    assert np.sum(onehot[0]) == 1
    assert np.sum(onehot) == 2
Exemplo n.º 2
0
def cost(y, logits, regularize=False, l2_weight=0.01):
    batch_size = logits.get_shape().as_list()[0]
    with tf.name_scope('cost'):
        with tf.name_scope('xentropy'):
            xentropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
                logits, tf.cast(modeling.onehot(y, NUM_CLASSES), 'float')))

        if regularize:
            l2 = modeling.l2_penalty(l2_weight)

        tot_cost = xentropy

        if regularize:
            tot_cost = tf.add(xentropy, l2)

    tf.scalar_summary('cost', tot_cost)
    return tot_cost