def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) database_column_embedding_size = 8 n_database_columns = len(data.database_columns) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) histories_utterance_length = data.train_set['histories'].shape[2] history_length = data.train_set['histories'].shape[1] histories_arguments_embedding_size = 8 histories_arguments_vocabulary_length = len( data.idx2word_history_arguments) n_histories_arguments = data.train_set['histories_arguments'].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) with tf.name_scope('data'): database = tf.Variable(data.database, name='database', trainable=False) batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_histories_arguments = tf.Variable( data.batch_histories_arguments, name='histories_arguments', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) histories_arguments = tf.gather(batch_histories_arguments, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) # inference model with tf.name_scope('model'): with tf.variable_scope("batch_size"): batch_size = tf.shape(histories)[0] database_embedding = multicolumn_embedding( columns=database, lengths=[ len(i2w) for i2w in [ data.database_idx2word[column] for column in data.database_columns ] ], sizes=[ database_column_embedding_size for column in data.database_columns ], # all columns have the same size name='database_embedding') histories_embedding = embedding(input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name='histories_embedding') histories_arguments_embedding = embedding( input=histories_arguments, length=histories_arguments_vocabulary_length, size=histories_arguments_embedding_size, name='histories_arguments_embedding') with tf.name_scope("UtterancesEncoder"): conv3 = histories_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_utt_size_3_layer_1') encoded_utterances = reduce_max(conv3, [2], keep_dims=True, name='encoded_utterances') with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_1') conv3 = max_pool(conv3, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1]) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_2') encoded_history = reduce_max(conv3, [1, 2], name='encoded_history') # print(encoded_history) with tf.name_scope("DatabaseAttention"): histories_arguments_embedding = tf.reshape( histories_arguments_embedding, [ -1, n_histories_arguments * histories_arguments_embedding_size ], name='histories_arguments_embedding') # print(histories_arguments_embedding) history_predicate = tf.concat( 1, [encoded_history, histories_arguments_embedding], name='history_predicate') print(history_predicate) att_W_nx = conv3.size + n_histories_arguments * histories_arguments_embedding_size att_W_ny = n_database_columns * database_column_embedding_size att_W = tf.get_variable( name='attention_W', shape=[att_W_nx, att_W_ny], initializer=tf.random_uniform_initializer( -glorot_mul(att_W_nx, att_W_ny), glorot_mul(att_W_nx, att_W_ny)), ) hp_x_att_W = tf.matmul(history_predicate, att_W) attention_scores = tf.matmul(hp_x_att_W, database_embedding, transpose_b=True) attention = tf.nn.softmax(attention_scores, name="attention_softmax") print(attention) attention_max = tf.reduce_max(attention, reduction_indices=1, keep_dims=True) attention_min = tf.reduce_min(attention, reduction_indices=1, keep_dims=True) attention_mean = tf.reduce_mean(attention_scores, reduction_indices=1, keep_dims=True) attention_feat = tf.concat( 1, [attention_max, attention_mean, attention_min], name='attention_feat') attention_feat_size = 3 print(attention_feat) db_result = tf.matmul(attention, database_embedding, name='db_result') db_result_size = att_W_ny print(db_result) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat(1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, attention_feat, db_result ], name='dialogue_state') dialogue_state_size = conv3.size + \ 3 * histories_embedding_size * conv_mul + \ attention_feat_size + \ db_result_size activation = tf.nn.relu(dialogue_state) activation = dropout(activation, self.dropout_keep_prob) projection = linear(input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_1') projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_1_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear(input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_2') projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_2_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name='linear_projection_3') self.predictions = tf.nn.softmax(projection, name="predictions") # print(self.predictions) if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels = dense_to_one_hot( actions_template, action_templates_vocabulary_length) self.loss = tf.reduce_mean( -one_hot_labels * tf.log(tf.clip_by_value(self.predictions, 1e-10, 1.0)), name='loss') tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(one_hot_labels, 1), tf.argmax(self.predictions, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) tf.scalar_summary('accuracy', self.accuracy)
def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) histories_utterance_length = data.train_set['histories'].shape[2] history_length = data.train_set['histories'].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) with tf.name_scope('data'): batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) with tf.name_scope('model'): with tf.variable_scope("batch_size"): batch_size = tf.shape(histories)[0] encoder_embedding = embedding(input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name='encoder_embedding') with tf.name_scope("UtterancesEncoder"): conv3 = encoder_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_utt_size_3_layer_1') encoded_utterances = reduce_max(conv3, [2], keep_dims=True) with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_1') conv3 = max_pool(conv3, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1]) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_2') encoded_history = reduce_max(conv3, [1, 2]) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat(1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, ], name='dialogue_state') dialogue_state_size = conv3.size + \ 3 * histories_embedding_size * conv_mul activation = tf.nn.relu(dialogue_state) activation = dropout(activation, self.dropout_keep_prob) projection = linear(input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_1') projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_1_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear(input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_2') projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_2_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name='linear_projection_3') self.predictions = tf.nn.softmax(projection, name="softmax_output") # print(self.predictions) if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels = dense_to_one_hot( actions_template, action_templates_vocabulary_length) self.loss = tf.reduce_mean( -one_hot_labels * tf.log(tf.clip_by_value(self.predictions, 1e-10, 1.0)), name='loss') # self.loss = tf.reduce_mean(- one_hot_labels * tf.log(self.predictions), name='loss') tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(one_hot_labels, 1), tf.argmax(self.predictions, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) tf.scalar_summary('accuracy', self.accuracy)
def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) histories_utterance_length = data.train_set["histories"].shape[2] history_length = data.train_set["histories"].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) with tf.name_scope("data"): batch_histories = tf.Variable(data.batch_histories, name="histories", trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name="actions", trainable=False) histories = tf.gather(batch_histories, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) with tf.name_scope("model"): with tf.variable_scope("batch_size"): batch_size = tf.shape(histories)[0] encoder_embedding = embedding( input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name="encoder_embedding", ) with tf.name_scope("UtterancesEncoder"): conv3 = encoder_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name="conv_utt_size_3_layer_1", ) encoded_utterances = reduce_max(conv3, [2], keep_dims=True) with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name="conv_hist_size_3_layer_1", ) conv3 = max_pool(conv3, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1]) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name="conv_hist_size_3_layer_2", ) encoded_history = reduce_max(conv3, [1, 2]) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat( 1, [encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance], name="dialogue_state", ) dialogue_state_size = conv3.size + 3 * histories_embedding_size * conv_mul activation = tf.nn.relu(dialogue_state) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name="linear_projection_1", ) projection = batch_norm_lin( projection, dialogue_state_size, self.phase_train, name="linear_projection_1_bn" ) activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name="linear_projection_2", ) projection = batch_norm_lin( projection, dialogue_state_size, self.phase_train, name="linear_projection_2_bn" ) activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name="linear_projection_3", ) self.predictions = tf.nn.softmax(projection, name="softmax_output") # print(self.predictions) if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope("loss"): one_hot_labels = dense_to_one_hot(actions_template, action_templates_vocabulary_length) self.loss = tf.reduce_mean( -one_hot_labels * tf.log(tf.clip_by_value(self.predictions, 1e-10, 1.0)), name="loss" ) # self.loss = tf.reduce_mean(- one_hot_labels * tf.log(self.predictions), name='loss') tf.scalar_summary("loss", self.loss) with tf.name_scope("accuracy"): correct_prediction = tf.equal(tf.argmax(one_hot_labels, 1), tf.argmax(self.predictions, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) tf.scalar_summary("accuracy", self.accuracy)
def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) database_column_embedding_size = 8 n_database_columns = len(data.database_columns) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) histories_utterance_length = data.train_set['histories'].shape[2] history_length = data.train_set['histories'].shape[1] histories_arguments_embedding_size = 8 histories_arguments_vocabulary_length = len(data.idx2word_history_arguments) n_histories_arguments = data.train_set['histories_arguments'].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) with tf.name_scope('data'): database = tf.Variable(data.database, name='database', trainable=False) batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_histories_arguments = tf.Variable(data.batch_histories_arguments, name='histories_arguments', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) histories_arguments = tf.gather(batch_histories_arguments, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) # inference model with tf.name_scope('model'): with tf.variable_scope("batch_size"): batch_size = tf.shape(histories)[0] database_embedding = multicolumn_embedding( columns=database, lengths=[len(i2w) for i2w in [data.database_idx2word[column] for column in data.database_columns]], sizes=[database_column_embedding_size for column in data.database_columns], # all columns have the same size name='database_embedding' ) histories_embedding = embedding( input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name='histories_embedding' ) histories_arguments_embedding = embedding( input=histories_arguments, length=histories_arguments_vocabulary_length, size=histories_arguments_embedding_size, name='histories_arguments_embedding' ) with tf.name_scope("UtterancesEncoder"): conv3 = histories_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_utt_size_3_layer_1' ) encoded_utterances = reduce_max(conv3, [2], keep_dims=True, name='encoded_utterances') with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_1' ) conv3 = max_pool(conv3, ksize=[1, 2, 1, 1], strides=[1, 2, 1, 1]) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_2' ) encoded_history = reduce_max(conv3, [1, 2], name='encoded_history') # print(encoded_history) with tf.name_scope("DatabaseAttention"): histories_arguments_embedding = tf.reshape( histories_arguments_embedding, [-1, n_histories_arguments * histories_arguments_embedding_size], name='histories_arguments_embedding' ) # print(histories_arguments_embedding) history_predicate = tf.concat( 1, [encoded_history, histories_arguments_embedding], name='history_predicate' ) print(history_predicate) att_W_nx = conv3.size + n_histories_arguments * histories_arguments_embedding_size att_W_ny = n_database_columns * database_column_embedding_size att_W = tf.get_variable( name='attention_W', shape=[att_W_nx, att_W_ny], initializer=tf.random_uniform_initializer( -glorot_mul(att_W_nx, att_W_ny), glorot_mul(att_W_nx, att_W_ny) ), ) hp_x_att_W = tf.matmul(history_predicate, att_W) attention_scores = tf.matmul(hp_x_att_W, database_embedding, transpose_b=True) attention = tf.nn.softmax(attention_scores, name="attention_softmax") print(attention) attention_max = tf.reduce_max(attention, reduction_indices=1, keep_dims=True) attention_min = tf.reduce_min(attention, reduction_indices=1, keep_dims=True) attention_mean = tf.reduce_mean(attention_scores, reduction_indices=1, keep_dims=True) attention_feat = tf.concat(1, [attention_max, attention_mean, attention_min], name='attention_feat') attention_feat_size = 3 print(attention_feat) db_result = tf.matmul(attention, database_embedding, name='db_result') db_result_size = att_W_ny print(db_result) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat( 1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, attention_feat, db_result ], name='dialogue_state' ) dialogue_state_size = conv3.size + \ 3 * histories_embedding_size * conv_mul + \ attention_feat_size + \ db_result_size activation = tf.nn.relu(dialogue_state) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_1' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_1_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_2' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_2_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name='linear_projection_3' ) self.predictions = tf.nn.softmax(projection, name="predictions") # print(self.predictions) if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels = dense_to_one_hot(actions_template, action_templates_vocabulary_length) self.loss = tf.reduce_mean(- one_hot_labels * tf.log(tf.clip_by_value(self.predictions, 1e-10, 1.0)), name='loss') tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(one_hot_labels, 1), tf.argmax(self.predictions, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) tf.scalar_summary('accuracy', self.accuracy)