Exemplo n.º 1
0
parameters['num_layers'] = 3
parameters['iterations'] = 2
parameters['batch_size'] = 128
parameters['module_name'] = 'gru'   # Other options: 'lstm' or 'lstmLN'
parameters['z_dim'] = len(dataX[0][0,:]) 

#%% Experiments
# Output Initialization
Discriminative_Score = list()
Predictive_Score = list()

# Each Iteration
for it in range(Iteration):

    # Synthetic Data Generation
        dataX_hat = tgan(dataX,dataXs, parameters)   
          
        print('Finish Synthetic Data Generation')
    
        #%% Performance Metrics
        
        # 1. Discriminative Score
        Acc = list()
        for tt in range(Sub_Iteration):
            Temp_Disc = discriminative_score_metrics (dataX, dataX_hat)
            Acc.append(Temp_Disc)
        
        Discriminative_Score.append(np.mean(Acc))
        print('generated discriminative score')
        # 2. Predictive Performance
        MAE_All = list()
Exemplo n.º 2
0
 def fit(self, filename, logger=''):
     self.dataX_hat = tgan(self.dataX, self.parameters,
                           self.noise_generator, logger, filename)
     print('Finish Synthetic Data Generation')