def _compute_f1(self, cur_valid_out, valid_trees): """Compute F1 score of the current output on a set of validation trees. If the validation set is a tuple (two paraphrases), returns the average. @param cur_valid_out: the current system output on the validation DAs @param valid_trees: the gold trees for the validation DAs (one or two paraphrases) @return: (average) F1 score, as a float """ evaluator = Evaluator() for pred_tree, gold_trees in zip(cur_valid_out, valid_trees): for gold_tree in gold_trees: evaluator.append(TreeNode(gold_tree), TreeNode(pred_tree)) return evaluator.f1()
def eval_trees(das, eval_ttrees, gen_ttrees, eval_doc, language, selector): """Evaluate generated trees and print out statistics.""" log_info('Evaluating...') evaler = Evaluator() for eval_bundle, eval_ttree, gen_ttree, da in zip(eval_doc.bundles, eval_ttrees, gen_ttrees, das): # add some stats about the tree directly into the output file add_bundle_text(eval_bundle, language, selector + 'Xscore', "P: %.4f R: %.4f F1: %.4f" % p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree))) # collect overall stats # TODO maybe add cost ?? evaler.append(eval_ttree, gen_ttree) # print overall stats log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1()) log_info("DEP precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1(EvalTypes.DEP)) log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.size_stats()) log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.score_stats()) log_info("Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" % evaler.common_substruct_stats())
def eval_tokens(das, eval_tokens, gen_tokens): """Evaluate generated tokens and print out statistics.""" postprocess_tokens(eval_tokens, das) postprocess_tokens(gen_tokens, das) evaluator = BLEUMeasure() for pred_sent, gold_sents in zip(gen_tokens, eval_tokens): evaluator.append(pred_sent, gold_sents) log_info("BLEU score: %.4f" % (evaluator.bleu() * 100)) evaluator = Evaluator() for pred_sent, gold_sents in zip(gen_tokens, eval_tokens): for gold_sent in gold_sents: # effectively an average over all gold paraphrases evaluator.append(gold_sent, pred_sent) log_info("TOKEN precision: %.4f, Recall: %.4f, F1: %.4f" % evaluator.p_r_f1(EvalTypes.TOKEN)) log_info("Sentence length stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaluator.size_stats()) log_info("Common subphrase stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" % evaluator.common_substruct_stats())
def seq2seq_gen(args): """Sequence-to-sequence generation""" def write_trees_or_tokens(output_file, das, gen_trees, base_doc, language, selector): """Decide to write t-trees or tokens based on the output file name.""" if output_file.endswith('.txt'): gen_toks = [t.to_tok_list() for t in gen_trees] postprocess_tokens(gen_toks, das) write_tokens(gen_toks, output_file) else: write_ttrees( create_ttree_doc(gen_trees, base_doc, language, selector), output_file) ap = ArgumentParser(prog=' '.join(sys.argv[0:2])) ap.add_argument('-e', '--eval-file', type=str, help='A ttree/text file for evaluation') ap.add_argument( '-a', '--abstr-file', type=str, help= 'Lexicalization file (a.k.a. abstraction instructions, for postprocessing)' ) ap.add_argument('-r', '--ref-selector', type=str, default='', help='Selector for reference trees in the evaluation file') ap.add_argument( '-t', '--target-selector', type=str, default='', help='Target selector for generated trees in the output file') ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name') ap.add_argument('-w', '--output-file', type=str, help='Output tree/text file') ap.add_argument('-D', '--delex-output-file', type=str, help='Output file for trees/text before lexicalization') ap.add_argument('-b', '--beam-size', type=int, help='Override beam size for beam search decoding') ap.add_argument('-c', '--context-file', type=str, help='Input ttree/text file with context utterances') ap.add_argument('seq2seq_model_file', type=str, help='Trained Seq2Seq generator model') ap.add_argument('da_test_file', type=str, help='Input DAs for generation') args = ap.parse_args(args) if args.debug_logfile: set_debug_stream(file_stream(args.debug_logfile, mode='w')) # load the generator tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file) if args.beam_size is not None: tgen.beam_size = args.beam_size # read input files (DAs, contexts) das = read_das(args.da_test_file) if args.context_file: if not tgen.use_context and not tgen.context_bleu_weight: log_warn( 'Generator is not trained to use context, ignoring context input file.' ) else: if args.context_file.endswith('.txt'): contexts = read_tokens(args.context_file) else: contexts = tokens_from_doc(read_ttrees(args.context_file), tgen.language, tgen.selector) das = [(context, da) for context, da in zip(contexts, das)] elif tgen.use_context or tgen.context_bleu_weight: log_warn('Generator is trained to use context. ' + 'Using empty contexts, expect lower performance.') das = [([], da) for da in das] # generate log_info('Generating...') gen_trees = [] for num, da in enumerate(das, start=1): log_debug("\n\nTREE No. %03d" % num) gen_trees.append(tgen.generate_tree(da)) if num % 100 == 0: log_info("Generated tree %d" % num) log_info(tgen.get_slot_err_stats()) if args.delex_output_file is not None: log_info('Writing delex output...') write_trees_or_tokens(args.delex_output_file, das, gen_trees, None, tgen.language, args.target_selector or tgen.selector) # evaluate the generated trees against golden trees (delexicalized) eval_doc = None if args.eval_file and not args.eval_file.endswith('.txt'): eval_doc = read_ttrees(args.eval_file) evaler = Evaluator() evaler.process_eval_doc(eval_doc, gen_trees, tgen.language, args.ref_selector, args.target_selector or tgen.selector) # lexicalize, if required if args.abstr_file and tgen.lexicalizer: log_info('Lexicalizing...') tgen.lexicalize(gen_trees, args.abstr_file) # we won't need contexts anymore, but we do need DAs if tgen.use_context or tgen.context_bleu_weight: das = [da for _, da in das] # evaluate the generated & lexicalized tokens (F1 and BLEU scores) if args.eval_file and args.eval_file.endswith('.txt'): eval_tokens(das, read_tokens(args.eval_file, ref_mode=True), [t.to_tok_list() for t in gen_trees]) # write output .yaml.gz or .txt if args.output_file is not None: log_info('Writing output...') write_trees_or_tokens(args.output_file, das, gen_trees, eval_doc, tgen.language, args.target_selector or tgen.selector)
def asearch_gen(args): """A*search generation""" from pytreex.core.document import Document opts, files = getopt(args, 'e:d:w:c:s:') eval_file = None fname_ttrees_out = None cfg_file = None eval_selector = '' for opt, arg in opts: if opt == '-e': eval_file = arg elif opt == '-s': eval_selector = arg elif opt == '-d': set_debug_stream(file_stream(arg, mode='w')) elif opt == '-w': fname_ttrees_out = arg elif opt == '-c': cfg_file = arg if len(files) != 3: sys.exit('Invalid arguments.\n' + __doc__) fname_cand_model, fname_rank_model, fname_da_test = files log_info('Initializing...') candgen = RandomCandidateGenerator.load_from_file(fname_cand_model) ranker = PerceptronRanker.load_from_file(fname_rank_model) cfg = Config(cfg_file) if cfg_file else {} cfg.update({'candgen': candgen, 'ranker': ranker}) tgen = ASearchPlanner(cfg) log_info('Generating...') das = read_das(fname_da_test) if eval_file is None: gen_doc = Document() else: eval_doc = read_ttrees(eval_file) if eval_selector == tgen.selector: gen_doc = Document() else: gen_doc = eval_doc # generate and evaluate if eval_file is not None: # generate + analyze open&close lists lists_analyzer = ASearchListsAnalyzer() for num, (da, gold_tree) in enumerate(zip( das, trees_from_doc(eval_doc, tgen.language, eval_selector)), start=1): log_debug("\n\nTREE No. %03d" % num) gen_tree = tgen.generate_tree(da, gen_doc) lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list) if gen_tree != gold_tree: log_debug("\nDIFFING TREES:\n" + tgen.ranker.diffing_trees_with_scores( da, gold_tree, gen_tree) + "\n") log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' % lists_analyzer.stats()) # evaluate the generated trees against golden trees eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector) gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector) log_info('Evaluating...') evaler = Evaluator() for eval_bundle, eval_ttree, gen_ttree, da in zip( eval_doc.bundles, eval_ttrees, gen_ttrees, das): # add some stats about the tree directly into the output file add_bundle_text( eval_bundle, tgen.language, tgen.selector + 'Xscore', "P: %.4f R: %.4f F1: %.4f" % p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree))) # collect overall stats evaler.append(eval_ttree, gen_ttree, ranker.score(TreeData.from_ttree(eval_ttree), da), ranker.score(TreeData.from_ttree(gen_ttree), da)) # print overall stats log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1()) log_info("DEP precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1(EvalTypes.DEP)) log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.size_stats()) log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.score_stats()) log_info( "Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" % evaler.common_substruct_stats()) # just generate else: for da in das: tgen.generate_tree(da, gen_doc) # write output if fname_ttrees_out is not None: log_info('Writing output...') write_ttrees(gen_doc, fname_ttrees_out)
def seq2seq_gen(args): """Sequence-to-sequence generation""" ap = ArgumentParser() ap.add_argument('-e', '--eval-file', type=str, help='A ttree/text file for evaluation') ap.add_argument('-a', '--abstr-file', type=str, help='Lexicalization file (a.k.a. abstraction instructions, for postprocessing)') ap.add_argument('-r', '--ref-selector', type=str, default='', help='Selector for reference trees in the evaluation file') ap.add_argument('-t', '--target-selector', type=str, default='', help='Target selector for generated trees in the output file') ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name') ap.add_argument('-w', '--output-file', type=str, help='Output tree/text file') ap.add_argument('-b', '--beam-size', type=int, help='Override beam size for beam search decoding') ap.add_argument('-c', '--context-file', type=str, help='Input ttree/text file with context utterances') ap.add_argument('seq2seq_model_file', type=str, help='Trained Seq2Seq generator model') ap.add_argument('da_test_file', type=str, help='Input DAs for generation') args = ap.parse_args(args) if args.debug_logfile: set_debug_stream(file_stream(args.debug_logfile, mode='w')) # load the generator tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file) if args.beam_size is not None: tgen.beam_size = args.beam_size # read input files das = read_das(args.da_test_file) if args.context_file: if not tgen.use_context and not tgen.context_bleu_weight: log_warn('Generator is not trained to use context, ignoring context input file.') else: if args.context_file.endswith('.txt'): contexts = read_tokens(args.context_file) else: contexts = tokens_from_doc(read_ttrees(args.context_file), tgen.language, tgen.selector) das = [(context, da) for context, da in zip(contexts, das)] # generate log_info('Generating...') gen_trees = [] for num, da in enumerate(das, start=1): log_debug("\n\nTREE No. %03d" % num) gen_trees.append(tgen.generate_tree(da)) log_info(tgen.get_slot_err_stats()) # evaluate the generated trees against golden trees (delexicalized) eval_doc = None if args.eval_file and not args.eval_file.endswith('.txt'): eval_doc = read_ttrees(args.eval_file) evaler = Evaluator() evaler.process_eval_doc(eval_doc, gen_trees, tgen.language, args.ref_selector, args.target_selector or tgen.selector) # lexicalize, if required if args.abstr_file and tgen.lexicalizer: log_info('Lexicalizing...') tgen.lexicalize(gen_trees, args.abstr_file) # evaluate the generated & lexicalized tokens (F1 and BLEU scores) if args.eval_file and args.eval_file.endswith('.txt'): eval_tokens(das, read_tokens(args.eval_file, ref_mode=True), gen_trees) # write output .yaml.gz or .txt if args.output_file is not None: log_info('Writing output...') if args.output_file.endswith('.txt'): write_tokens(gen_trees, args.output_file) else: write_ttrees(create_ttree_doc(gen_trees, eval_doc, tgen.language, args.target_selector or tgen.selector), args.output_file)
def seq2seq_gen(args): """Sequence-to-sequence generation""" ap = ArgumentParser(prog=' '.join(sys.argv[0:2])) ap.add_argument('-e', '--eval-file', type=str, help='A ttree/text file for evaluation') ap.add_argument('-a', '--abstr-file', type=str, help='Lexicalization file (a.k.a. abstraction instructions, for postprocessing)') ap.add_argument('-r', '--ref-selector', type=str, default='', help='Selector for reference trees in the evaluation file') ap.add_argument('-t', '--target-selector', type=str, default='', help='Target selector for generated trees in the output file') ap.add_argument('-d', '--debug-logfile', type=str, help='Debug output file name') ap.add_argument('-w', '--output-file', type=str, help='Output tree/text file') ap.add_argument('-b', '--beam-size', type=int, help='Override beam size for beam search decoding') ap.add_argument('-c', '--context-file', type=str, help='Input ttree/text file with context utterances') ap.add_argument('seq2seq_model_file', type=str, help='Trained Seq2Seq generator model') ap.add_argument('da_test_file', type=str, help='Input DAs for generation') args = ap.parse_args(args) if args.debug_logfile: set_debug_stream(file_stream(args.debug_logfile, mode='w')) # load the generator tgen = Seq2SeqBase.load_from_file(args.seq2seq_model_file) if args.beam_size is not None: tgen.beam_size = args.beam_size # read input files (DAs, contexts) das = read_das(args.da_test_file) if args.context_file: if not tgen.use_context and not tgen.context_bleu_weight: log_warn('Generator is not trained to use context, ignoring context input file.') else: if args.context_file.endswith('.txt'): contexts = read_tokens(args.context_file) else: contexts = tokens_from_doc(read_ttrees(args.context_file), tgen.language, tgen.selector) das = [(context, da) for context, da in zip(contexts, das)] elif tgen.use_context or tgen.context_bleu_weight: log_warn('Generator is trained to use context. ' + 'Using empty contexts, expect lower performance.') das = [([], da) for da in das] # generate log_info('Generating...') gen_trees = [] for num, da in enumerate(das, start=1): log_debug("\n\nTREE No. %03d" % num) gen_trees.append(tgen.generate_tree(da)) if num % 100 == 0: log_info("Generated tree %d" % num) log_info(tgen.get_slot_err_stats()) # evaluate the generated trees against golden trees (delexicalized) eval_doc = None if args.eval_file and not args.eval_file.endswith('.txt'): eval_doc = read_ttrees(args.eval_file) evaler = Evaluator() evaler.process_eval_doc(eval_doc, gen_trees, tgen.language, args.ref_selector, args.target_selector or tgen.selector) # lexicalize, if required if args.abstr_file and tgen.lexicalizer: log_info('Lexicalizing...') tgen.lexicalize(gen_trees, args.abstr_file) # we won't need contexts anymore, but we do need DAs if tgen.use_context or tgen.context_bleu_weight: das = [da for _, da in das] # evaluate the generated & lexicalized tokens (F1 and BLEU scores) if args.eval_file and args.eval_file.endswith('.txt'): eval_tokens(das, read_tokens(args.eval_file, ref_mode=True), [t.to_tok_list() for t in gen_trees]) # write output .yaml.gz or .txt if args.output_file is not None: log_info('Writing output...') if args.output_file.endswith('.txt'): gen_toks = [t.to_tok_list() for t in gen_trees] postprocess_tokens(gen_toks, das) write_tokens(gen_toks, args.output_file) else: write_ttrees(create_ttree_doc(gen_trees, eval_doc, tgen.language, args.target_selector or tgen.selector), args.output_file)
def asearch_gen(args): """A*search generation""" from pytreex.core.document import Document opts, files = getopt(args, 'e:d:w:c:s:') eval_file = None fname_ttrees_out = None cfg_file = None eval_selector = '' for opt, arg in opts: if opt == '-e': eval_file = arg elif opt == '-s': eval_selector = arg elif opt == '-d': set_debug_stream(file_stream(arg, mode='w')) elif opt == '-w': fname_ttrees_out = arg elif opt == '-c': cfg_file = arg if len(files) != 3: sys.exit('Invalid arguments.\n' + __doc__) fname_cand_model, fname_rank_model, fname_da_test = files log_info('Initializing...') candgen = RandomCandidateGenerator.load_from_file(fname_cand_model) ranker = PerceptronRanker.load_from_file(fname_rank_model) cfg = Config(cfg_file) if cfg_file else {} cfg.update({'candgen': candgen, 'ranker': ranker}) tgen = ASearchPlanner(cfg) log_info('Generating...') das = read_das(fname_da_test) if eval_file is None: gen_doc = Document() else: eval_doc = read_ttrees(eval_file) if eval_selector == tgen.selector: gen_doc = Document() else: gen_doc = eval_doc # generate and evaluate if eval_file is not None: # generate + analyze open&close lists lists_analyzer = ASearchListsAnalyzer() for num, (da, gold_tree) in enumerate(zip(das, trees_from_doc(eval_doc, tgen.language, eval_selector)), start=1): log_debug("\n\nTREE No. %03d" % num) gen_tree = tgen.generate_tree(da, gen_doc) lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list) if gen_tree != gold_tree: log_debug("\nDIFFING TREES:\n" + tgen.ranker.diffing_trees_with_scores(da, gold_tree, gen_tree) + "\n") log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' % lists_analyzer.stats()) # evaluate the generated trees against golden trees eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector) gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector) log_info('Evaluating...') evaler = Evaluator() for eval_bundle, eval_ttree, gen_ttree, da in zip(eval_doc.bundles, eval_ttrees, gen_ttrees, das): # add some stats about the tree directly into the output file add_bundle_text(eval_bundle, tgen.language, tgen.selector + 'Xscore', "P: %.4f R: %.4f F1: %.4f" % p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree))) # collect overall stats evaler.append(eval_ttree, gen_ttree, ranker.score(TreeData.from_ttree(eval_ttree), da), ranker.score(TreeData.from_ttree(gen_ttree), da)) # print overall stats log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1()) log_info("DEP precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1(EvalTypes.DEP)) log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.size_stats()) log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.score_stats()) log_info("Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" % evaler.common_substruct_stats()) # just generate else: for da in das: tgen.generate_tree(da, gen_doc) # write output if fname_ttrees_out is not None: log_info('Writing output...') write_ttrees(gen_doc, fname_ttrees_out)