Exemplo n.º 1
0
def test_elbo():
    mu0 = 1.5
    sigma = 1.0
    y_obs = np.array([1.6, 1.4])

    post_mu = np.array([1.88], dtype=theano.config.floatX)
    post_sd = np.array([1], dtype=theano.config.floatX)
    # Create a model for test
    with Model() as model:
        mu = Normal('mu', mu=mu0, sd=sigma)
        Normal('y', mu=mu, sd=1, observed=y_obs)

    # Create variational gradient tensor
    mean_field = MeanField(model=model)
    with change_flags(compute_test_value='off'):
        elbo = -KL(mean_field)()(10000)

    mean_field.shared_params['mu'].set_value(post_mu)
    mean_field.shared_params['rho'].set_value(np.log(np.exp(post_sd) - 1))

    f = theano.function([], elbo)
    elbo_mc = f()

    # Exact value
    elbo_true = (-0.5 * (
        3 + 3 * post_mu ** 2 - 2 * (y_obs[0] + y_obs[1] + mu0) * post_mu +
        y_obs[0] ** 2 + y_obs[1] ** 2 + mu0 ** 2 + 3 * np.log(2 * np.pi)) +
                 0.5 * (np.log(2 * np.pi) + 1))
    np.testing.assert_allclose(elbo_mc, elbo_true, rtol=0, atol=1e-1)
Exemplo n.º 2
0
def test_intensity(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, udeg=2)
        np.random.seed(11)
        lat = 180 * (np.random.random(10) - 0.5)
        lon = 360 * (np.random.random(10) - 0.5)
        y = [1.0] + list(np.random.randn(8))
        u = [-1.0] + list(np.random.randn(2))
        f = [np.pi]
        theta = 0.0
        alpha = 0.1
        tau = 0.5
        delta = 0.0

        def intensity(lat, lon, y, u, f, theta, alpha, tau, delta):
            return map.ops.intensity(lat, lon, y, u, f, theta, alpha, tau,
                                     delta, np.array(True))

        verify_grad(
            intensity,
            (lat, lon, y, u, f, theta, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 3
0
def test_flow_forward_apply(flow_spec):
    z0 = pm.tt_rng().normal(size=(10, 20))
    flow = flow_spec(dim=20, z0=z0)
    with change_flags(compute_test_value='off'):
        dist = flow.forward
        shape_dist = dist.shape.eval()
    assert tuple(shape_dist) == (10, 20)
Exemplo n.º 4
0
def test_rv(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, rv=True)
        theta = np.linspace(0, 30, 10)
        xo = np.linspace(-1.5, 1.5, len(theta))
        yo = np.ones_like(xo) * 0.3
        zo = 1.0 * np.ones_like(xo)
        ro = 0.1
        inc = 85.0 * np.pi / 180.0
        obl = 30.0 * np.pi / 180.0
        veq = 0.5
        alpha = 0.3
        tau = 0.5
        delta = 0.0
        y = np.ones(9)
        u = [-1.0]

        # Just rotation
        verify_grad(
            map.ops.rv,
            (theta, xo, yo, zo, 0.0, inc, obl, y, u, veq, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )

        # Just occultation
        verify_grad(
            map.ops.rv,
            (
                theta,
                xo / 3,
                yo,
                zo,
                ro,
                inc,
                obl,
                y,
                u,
                veq,
                alpha,
                tau,
                delta,
            ),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )

        # Rotation + occultation
        verify_grad(
            map.ops.rv,
            (theta, xo, yo, zo, ro, inc, obl, y, u, veq, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 5
0
def test_flow_det_shape(flow_spec):
    with change_flags(compute_test_value='off'):
        z0 = pm.tt_rng().normal(size=(10, 20))
        flow = flow_spec(dim=20, z0=z0)
        det = flow.logdet
        det_dist = det.shape.eval()
    assert tuple(det_dist) == (10,)
Exemplo n.º 6
0
def test_norm_grad():
    with change_flags(compute_test_value="off"):
        z = 0.001
        op = AlphaBetaOp(20)
        get_alpha = lambda z: op(z)[0]
        get_beta = lambda z: op(z)[1]
        theano.gradient.verify_grad(get_alpha, [z], n_tests=1, rng=np.random)
        theano.gradient.verify_grad(get_beta, [z], n_tests=1, rng=np.random)
Exemplo n.º 7
0
def test_sqrt_grad():
    with change_flags(compute_test_value="off"):
        np.random.seed(0)
        Q = np.random.randn(10, 10)
        Q = Q @ Q.T
        theano.gradient.verify_grad(lambda x: tt.sum(matrix_sqrt(x)), (Q, ),
                                    n_tests=1,
                                    rng=np.random)
Exemplo n.º 8
0
def test_validate_input_types_gpuarray_backend():
    from theano.sandbox.rng_mrg import mrg_uniform
    from theano.gpuarray.type import gpuarray_shared_constructor
    from theano.configparser import change_flags

    with change_flags(compute_test_value="raise"):
        rstate = np.zeros((7, 6), dtype="int32")
        rstate = gpuarray_shared_constructor(rstate)
        mrg_uniform.new(rstate, ndim=None, dtype="float32", size=(3, ))
Exemplo n.º 9
0
def test_validate_input_types_gpuarray_backend():
    from theano.sandbox.rng_mrg import mrg_uniform
    from theano.gpuarray.type import gpuarray_shared_constructor
    from theano.configparser import change_flags

    with change_flags(compute_test_value="raise"):
        rstate = numpy.zeros((7, 6), dtype="int32")
        rstate = gpuarray_shared_constructor(rstate)
        mrg_uniform.new(rstate, ndim=None, dtype="float32", size=(3,))
Exemplo n.º 10
0
def test_flow_det(flow_spec):
    z0 = tt.arange(0, 20).astype('float32')
    flow = flow_spec(dim=20, z0=z0.dimshuffle('x', 0))
    with change_flags(compute_test_value='off'):
        z1 = flow.forward.flatten()
        J = tt.jacobian(z1, z0)
        logJdet = tt.log(tt.abs_(tt.nlinalg.det(J)))
        det = flow.logdet[0]
    np.testing.assert_allclose(logJdet.eval(), det.eval(), atol=0.0001)
Exemplo n.º 11
0
def test_rTA1L_grad():
    with change_flags(compute_test_value="off"):
        op = rTA1LOp(ydeg=1, udeg=3)
        theano.gradient.verify_grad(
            lambda u1, u2, u3: op([u1, u2, u3]),
            [0.5, 0.25, 0.1],
            n_tests=1,
            rng=np.random,
        )
Exemplo n.º 12
0
def test_flow_det(flow_spec):
    z0 = tt.arange(0, 20).astype('float32')
    flow = flow_spec(dim=20, z0=z0.dimshuffle('x', 0))
    with change_flags(compute_test_value='off'):
        z1 = flow.forward.flatten()
        J = tt.jacobian(z1, z0)
        logJdet = tt.log(tt.abs_(tt.nlinalg.det(J)))
        det = flow.logdet[0]
    np.testing.assert_allclose(logJdet.eval(), det.eval(), atol=0.0001)
Exemplo n.º 13
0
    def setup(self, oversample=1, ntries=1):
        self.ntries = ntries

        # Don't setup unless the user actually calls this function,
        # since there's quite a bit of overhead
        if self._do_setup or (oversample != self.oversample):

            self.oversample = oversample

            # Create the grid using healpy if available
            # Require at least `oversample * l ** 2 points`
            s = np.random.RandomState(0)
            if hp is None:
                npts = oversample * self.ydeg**2
                self.lat_grid = (
                    np.arccos(2 * s.rand(npts) - 1) * 180.0 / np.pi - 90.0)
                self.lon_grid = (s.rand(npts) - 0.5) * 360
            else:
                nside = 1
                while hp.nside2npix(nside) < oversample * self.ydeg**2:
                    nside += 1
                theta, phi = hp.pix2ang(nside=nside,
                                        ipix=range(hp.nside2npix(nside)))
                self.lat_grid = 0.5 * np.pi - theta
                self.lon_grid = phi - np.pi
                # Add a little noise for stability
                self.lat_grid += 1e-4 * s.randn(len(self.lat_grid))
                self.lon_grid += 1e-4 * s.randn(len(self.lon_grid))
            self.P_grid = self.P(
                tt.as_tensor_variable(self.lat_grid),
                tt.as_tensor_variable(self.lon_grid),
            ).eval()

            # Set up the cost & grad function for the nonlinear solver
            u0 = np.zeros(self.udeg + 1)
            u0[0] = -1.0
            u0 = tt.as_tensor_variable(u0)
            f0 = np.zeros((self.fdeg + 1)**2)
            f0[0] = np.pi
            f0 = tt.as_tensor_variable(f0)
            latlon = tt.dvector()
            y = tt.dvector()
            with change_flags(compute_test_value="off"):
                self.I = theano.function(
                    [latlon, y],
                    [
                        self.intensity(latlon[0], latlon[1], y, u0, f0, 0.0,
                                       0.0)[0],
                        *theano.grad(
                            self.intensity(latlon[0], latlon[1], y, u0, f0,
                                           0.0, 0.0)[0],
                            [latlon],
                        ),
                    ],
                )
            self._do_setup = False
Exemplo n.º 14
0
def test_sT(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2)
        verify_grad(
            map.ops.sT,
            (np.linspace(0.01, 1.09, 30), 0.1),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 15
0
def test_rT_reflected(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, reflected=True)
        bterm = np.linspace(-1, 1, 10)[1:-1]
        verify_grad(
            map.ops.rT,
            (bterm, ),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 16
0
def test_flux_reflected(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, reflected=True)
        theta = np.linspace(0, 30, 10)
        xs = np.linspace(-1.5, 1.5, len(theta))
        ys = np.ones_like(xs) * 0.3
        zs = -1.0 * np.ones_like(xs)
        ro = 0.0
        inc = 85.0 * np.pi / 180.0
        obl = 30.0 * np.pi / 180.0
        y = np.ones(9)
        u = [-1.0]
        f = [np.pi]
        alpha = 0.1
        tau = 0.5
        delta = 0.0
        Rs = 1.0
        sigr = 30 * np.pi / 180

        def func(theta, xs, ys, zs, Rs, ro, inc, obl, u, f, alpha, tau, delta):
            return tt.dot(
                map.ops.X(
                    theta,
                    xs,
                    ys,
                    zs,
                    Rs,
                    xs,
                    ys,
                    zs,
                    ro,
                    inc,
                    obl,
                    u,
                    f,
                    alpha,
                    tau,
                    delta,
                    sigr,
                ),
                y,
            )

        # Just rotation
        verify_grad(
            func,
            (theta, xs, ys, zs, Rs, ro, inc, obl, u, f, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 17
0
def test_eigh_grad():
    with change_flags(compute_test_value="off"):
        np.random.seed(0)
        Q = np.random.randn(10, 10)
        Q = Q @ Q.T
        eigh = EighOp()
        # Test the eigenvalues
        theano.gradient.verify_grad(lambda x: tt.sum(eigh(x)[0]), (Q, ),
                                    n_tests=1,
                                    rng=np.random)
        # Test the eigenvectors
        theano.gradient.verify_grad(lambda x: tt.sum(eigh(x)[1]), (Q, ),
                                    n_tests=1,
                                    rng=np.random)
Exemplo n.º 18
0
def test_flux_ylm_ld(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, udeg=2)
        theta = np.linspace(0, 30, 10)
        xo = np.linspace(-1.5, 1.5, len(theta))
        yo = np.ones_like(xo) * 0.3
        zo = 1.0 * np.ones_like(xo)
        ro = 0.1
        inc = 85.0 * np.pi / 180.0
        obl = 30.0 * np.pi / 180.0
        y = np.ones(9)
        np.random.seed(14)
        u = [-1.0] + list(np.random.randn(2))
        f = [np.pi]
        alpha = 0.1
        tau = 0.5
        delta = 0.0

        func = lambda *args: tt.dot(map.ops.X(*args), y)

        # Just rotation
        verify_grad(
            func,
            (theta, xo, yo, zo, 0.0, inc, obl, u, f, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )

        # Just occultation
        verify_grad(
            func,
            (theta, xo / 3, yo, zo, ro, inc, obl, u, f, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )

        # Rotation + occultation
        verify_grad(
            func,
            (theta, xo, yo, zo, ro, inc, obl, u, f, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 19
0
    def _get_func(self):
        """
        Return a function that makes a value from an integer.

        The integer value is assumed to be a valid pointer for the
        type and no check is done to ensure that.
        """
        from theano.scalar import get_scalar_type

        if self._fn is None:
            with change_flags(compute_test_value='off'):
                v = get_scalar_type('int64')()
                self._fn = theano.function([v], _make_cdata(self)(v),
                                           profile=False)
        return self._fn
Exemplo n.º 20
0
def test_pT(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2)
        map[1:, :] = 1
        x = np.array([0.13])
        y = np.array([0.25])
        z = np.sqrt(1 - x**2 - y**2)
        verify_grad(
            map.ops.pT,
            (x, y, z),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 21
0
def test_tensordotRz_grad(ydeg=2, abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        op = tensordotRzOp(ydeg)
        theta = (np.array([0.0, 15.0, 30.0, 45.0, 60.0, 75.0, 90.0]) * np.pi /
                 180.0)
        M = np.ones((len(theta), (ydeg + 1)**2))
        theano.gradient.verify_grad(
            op,
            (M, theta),
            n_tests=1,
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            rng=np.random,
        )
Exemplo n.º 22
0
def test_overflow_cpu():
    # run with THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32
    rng = MRG_RandomStreams(np.random.randint(1234))
    fct = rng.uniform
    with change_flags(compute_test_value='off'):
        # should raise error as the size overflows
        sizes = [(2**31, ), (2**32, ), (2**15, 2**16,), (2, 2**15, 2**15)]
        rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=True)
    # should not raise error
    sizes = [(2**5, ), (2**5, 2**5), (2**5, 2**5, 2**5)]
    rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=False)
    # should support int32 sizes
    sizes = [(np.int32(2**10), ),
             (np.int32(2), np.int32(2**10), np.int32(2**10))]
    rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=False)
Exemplo n.º 23
0
def test_config_context():
    # TODO: use custom config instance for the test
    root = configparser.config
    configparser.AddConfigVar(
        "test_config_context",
        "A config var from a test case.",
        configparser.StrParam("test_default"),
        root=root,
    )
    assert hasattr(root, "test_config_context")
    assert root.test_config_context == "test_default"

    with configparser.change_flags(test_config_context="new_value"):
        assert root.test_config_context == "new_value"
    assert root.test_config_context == "test_default"
Exemplo n.º 24
0
def test_diffrot(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):

    np.random.seed(0)
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=3, drorder=1)
        y = np.random.randn(4, map.Ny)
        wta = [0.1, 0.5, 1.0, 2.0]  # radians
        verify_grad(
            map.ops.tensordotD,
            (y, wta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 25
0
def test_spot_spectral(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=5, nw=2)
        amp = [-0.01, -0.02]
        sigma = 0.1
        lat = 30 * np.pi / 180
        lon = 45 * np.pi / 180
        verify_grad(
            map.ops.spotYlm,
            (amp, sigma, lat, lon),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 26
0
def test_F(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, udeg=2, rv=True)
        np.random.seed(11)
        u = np.random.randn(3)
        u[0] = -1
        f = np.random.randn(16)
        verify_grad(
            map.ops.F,
            (u, f),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 27
0
def test_Rx_grad(ydeg=5,
                 theta=np.pi / 3,
                 abs_tol=1e-5,
                 rel_tol=1e-5,
                 eps=1e-7):
    with change_flags(compute_test_value="off"):
        op = RxOp(ydeg)
        theano.gradient.verify_grad(
            lambda theta: op(theta)[0],
            (theta, ),
            n_tests=1,
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            rng=np.random,
        )
Exemplo n.º 28
0
def test_sT_reflected(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=2, reflected=True)
        b = np.array([0.5])
        theta = np.array([0.5])
        bo = np.array([0.75])
        ro = 0.5
        sigr = 30 * np.pi / 180
        verify_grad(
            map.ops.sT,
            (b, theta, bo, ro, sigr),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 29
0
    def _get_func(self):
        """
        Return a function that makes a value from an integer.

        The integer value is assumed to be a valid pointer for the
        type and no check is done to ensure that.
        """
        from theano.scalar import get_scalar_type

        if self._fn is None:
            with change_flags(compute_test_value='off'):
                v = get_scalar_type('int64')()
                self._fn = theano.function([v], _make_cdata(self)(v),
                                           mode=theano.Mode(optimizer=None),
                                           profile=False)
        return self._fn
Exemplo n.º 30
0
def test_diffrot(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    np.random.seed(0)
    with change_flags(compute_test_value="off"):
        map = starry.Map(ydeg=5)
        y = np.random.randn(4, map.Ny)
        alpha = 1.0
        tau = 0.5
        delta = 0.0
        theta = [0.1, 0.5, 1.0, 2.0]  # radians
        verify_grad(
            map.ops.tensordotD,
            (y, theta, alpha, tau, delta),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 31
0
def test_overflow_cpu():
    # run with THEANO_FLAGS=mode=FAST_RUN,device=cpu,floatX=float32
    rng = MRG_RandomStreams(np.random.randint(1234))
    fct = rng.uniform
    with change_flags(compute_test_value='off'):
        # should raise error as the size overflows
        sizes = [(2**31, ), (2**32, ), (
            2**15,
            2**16,
        ), (2, 2**15, 2**15)]
        rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=True)
    # should not raise error
    sizes = [(2**5, ), (2**5, 2**5), (2**5, 2**5, 2**5)]
    rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=False)
    # should support int32 sizes
    sizes = [(np.int32(2**10), ),
             (np.int32(2), np.int32(2**10), np.int32(2**10))]
    rng_mrg_overflow(sizes, fct, config.mode, should_raise_error=False)
Exemplo n.º 32
0
def test_flux_quad_ld(abs_tol=1e-5, rel_tol=1e-5, eps=1e-7):
    with change_flags(compute_test_value="off"):
        map = starry.Map(udeg=2)
        xo = np.linspace(-1.5, 1.5, 10)
        yo = np.ones_like(xo) * 0.3
        zo = 1.0 * np.ones_like(xo)
        ro = 0.1
        np.random.seed(14)
        u = np.array([-1.0] + list(np.random.randn(2)))
        func = lambda *args: map.ops.flux(*args)

        verify_grad(
            func,
            (xo, yo, zo, ro, u),
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            n_tests=1,
        )
Exemplo n.º 33
0
def test_config_hash():
    # TODO: use custom config instance for the test
    root = configparser.config
    configparser.AddConfigVar(
        "test_config_hash",
        "A config var from a test case.",
        configparser.StrParam("test_default"),
        root=root,
    )

    h0 = configparser.get_config_hash()

    with configparser.change_flags(test_config_hash="new_value"):
        assert root.test_config_hash == "new_value"
        h1 = configparser.get_config_hash()

    h2 = configparser.get_config_hash()
    assert h1 != h0
    assert h2 == h0
Exemplo n.º 34
0
def test_get_test_values_success():
    """Tests that `get_test_values` returns values when available (and the debugger is on)."""

    for mode in ["ignore", "warn", "raise"]:
        with change_flags(compute_test_value=mode):
            x = tt.vector()
            x.tag.test_value = np.zeros((4, ), dtype=config.floatX)
            y = np.zeros((5, 5))

            iters = 0

            for x_val, y_val in op.get_test_values(x, y):

                assert x_val.shape == (4, )
                assert y_val.shape == (5, 5)

                iters += 1

            assert iters == 1
Exemplo n.º 35
0
def test_special_tensordotRz_grad(ydeg=2,
                                  abs_tol=1e-5,
                                  rel_tol=1e-5,
                                  eps=1e-7):
    np.random.seed(0)
    with change_flags(compute_test_value="off"):
        op = special_tensordotRzOp(ydeg)
        theta = (np.array([0.0, 15.0, 30.0, 45.0, 60.0, 75.0, 90.0]) * np.pi /
                 180.0)
        M = np.random.random(((ydeg + 1)**2, (ydeg + 1)**2))
        T = np.random.random(((ydeg + 1)**2, (ydeg + 1)**2))
        theano.gradient.verify_grad(
            lambda M, theta: op(T, M, theta),
            (M, theta),
            n_tests=1,
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            rng=np.random,
        )
Exemplo n.º 36
0
def test_sqrt_grad_low_rank():
    # NOTE: For ydeg > 2 the *numerical* gradient gets
    # very unstable, so I'm not sure how to test this!
    ydeg = 2

    # Let's compute the sqrt of the latitude integral Q
    alpha = 55.0
    beta = 7.5

    def Q(alpha, beta):
        return LatitudeIntegralOp(ydeg)(alpha, beta)[3]

    def U(alpha, beta):
        return matrix_sqrt(Q(alpha, beta), neig=2 * ydeg + 1)

    with change_flags(compute_test_value="off"):
        theano.gradient.verify_grad(U, (alpha, beta),
                                    n_tests=1,
                                    eps=1e-4,
                                    rng=np.random)
Exemplo n.º 37
0
def test_latitude_grad(
    ydeg=3,
    a=defaults["a"],
    b=defaults["b"],
    abs_tol=1e-5,
    rel_tol=1e-5,
    eps=1e-7,
):
    with change_flags(compute_test_value="off"):
        op = LatitudeIntegralOp(ydeg)

        # Get Beta params
        a1 = -5
        a2 = 5
        b1 = -5
        b2 = 5
        alpha = np.exp(a * (a2 - a1) + a1)
        beta = np.exp(b * (b2 - b1) + b1)

        # d/dq
        theano.gradient.verify_grad(
            lambda alpha, beta: op(alpha, beta)[0],
            (alpha, beta),
            n_tests=1,
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            rng=np.random,
        )

        # d/dQ
        theano.gradient.verify_grad(
            lambda alpha, beta: op(alpha, beta)[3],
            (alpha, beta),
            n_tests=1,
            abs_tol=abs_tol,
            rel_tol=rel_tol,
            eps=eps,
            rng=np.random,
        )
Exemplo n.º 38
0
size = comm.Get_size()

if size != 2:
    stderr.write("mpiexec failed to create a world with two nodes.\n"
                 "Closing with success message.")
    stdout.write("True")
    exit(0)

shape = (2, 2)
dtype = 'float32'

scheduler = sort_schedule_fn(*mpi_cmps)
mode = theano.Mode(optimizer=None,
                   linker=theano.OpWiseCLinker(schedule=scheduler))

with change_flags(compute_test_value='off'):
    if rank == 0:
        x = theano.tensor.matrix('x', dtype=dtype)
        y = x + 1
        send_request = send(y, 1, 11)

        z = recv(shape, dtype, 1, 12)

        f = theano.function([x], [send_request, z], mode=mode)

        xx = np.random.rand(*shape).astype(dtype)
        expected = (xx + 1) * 2

        _, zz = f(xx)

        same = np.linalg.norm(zz - expected) < .001
Exemplo n.º 39
0
def test_validate_input_types_gpuarray_backend():
    with change_flags(compute_test_value="raise"):
        rstate = np.zeros((7, 6), dtype="int32")
        rstate = gpuarray_shared_constructor(rstate)
        rng_mrg.mrg_uniform.new(rstate, ndim=None, dtype="float32", size=(3,))