Exemplo n.º 1
0
    def make_node(self, x, y, ilist):
        ctx_name = infer_context_name(x, y)
        x_ = as_gpuarray_variable(x, ctx_name)
        y_ = as_gpuarray_variable(y, ctx_name)
        ilist_ = tt.as_tensor_variable(ilist)

        assert x_.type.ndim >= y_.type.ndim

        if ilist_.type.dtype not in tt.integer_dtypes:
            raise TypeError("index must be integers")
        if ilist_.type.ndim != 1:
            raise TypeError("index must be vector")
        if x_.type.ndim == 0:
            raise TypeError("cannot index into a scalar")
        if y_.type.ndim > x_.type.ndim:
            if self.set_instead_of_inc:
                opname = "set"
            else:
                opname = "increment"
            raise TypeError(
                "cannot %s x subtensor with ndim=%s by y with ndim=%s "
                % (opname, x_.type.ndim, y_.type.ndim)
            )

        return gof.Apply(self, [x_, y_, ilist_], [x_.type()])
Exemplo n.º 2
0
 def make_node(self, x, y, *inputs):
     ctx_name = infer_context_name(x, y)
     x = as_gpuarray_variable(x, ctx_name)
     y = as_gpuarray_variable(y, ctx_name)
     rval = IncSubtensor.make_node(self, x, y, *inputs)
     ret = gof.Apply(self, [x, y] + rval.inputs[2:], [x.type()])
     return ret
Exemplo n.º 3
0
    def make_node(self, x, y, ilist):
        """
        It differs from GpuAdvancedIncSubtensor1 in that it makes sure
        the indexes are of type long.

        """
        ctx_name = infer_context_name(x, y, ilist)
        x_ = as_gpuarray_variable(x, ctx_name)
        y_ = as_gpuarray_variable(y.astype(x.dtype), ctx_name)
        ilist_ = as_gpuarray_variable(ilist, ctx_name)

        assert x_.type.ndim >= y_.type.ndim

        if ilist_.type.dtype not in tt.integer_dtypes:
            raise TypeError("index must be integers")
        if ilist_.type.ndim != 1:
            raise TypeError("index must be vector")
        if x_.type.ndim == 0:
            raise TypeError("cannot index into a scalar")
        if y_.type.ndim > x_.type.ndim:
            if self.set_instead_of_inc:
                opname = "set"
            else:
                opname = "increment"
            raise TypeError(
                "cannot %s x subtensor with ndim=%s by y with ndim=%s "
                % (opname, x_.type.ndim, y_.type.ndim)
            )

        return gof.Apply(self, [x_, y_, ilist_], [x_.type()])
Exemplo n.º 4
0
    def make_node(self, inp, s=None):
        # A shape parameter is expected as an input. For now this is used to
        # manage odd transform sizes.
        # Later this could be extended to handle padding and trunkation,
        # following numpy's interface. However, cuFFT expects array that match
        # the shape given to the plan, so padding will have to be done in the op.
        # The effect of padding on gradients has yet to be investigated.

        if not skcuda_available:
            raise RuntimeError("skcuda is needed for CuIFFTOp")

        if not pygpu_available:
            raise RuntimeError("pygpu is needed for CuIFFTOp")

        if not pycuda_available:
            raise RuntimeError("pycuda is needed for CuIFFTOp")

        inp = gpu_contiguous(as_gpuarray_variable(inp, infer_context_name(inp)))

        # If no shape is provided as input, calculate shape assuming even real transform.
        if s is None:
            s = inp.shape[1:-1]
            s = tt.set_subtensor(s[-1], (s[-1] - 1) * 2)
        s = tt.as_tensor_variable(s)

        assert inp.dtype == "float32"
        assert s.ndim == 1

        return theano.Apply(self, [inp, s], [self.output_type(inp)()])
Exemplo n.º 5
0
    def make_node(self, inp1, inp2):
        if not cusolver_available:
            raise RuntimeError(
                "CUSOLVER is not available and "
                "GpuCusolverSolve Op can not be constructed."
            )
        if skcuda.__version__ <= "0.5.1":
            warnings.warn(
                "The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8"
            )
        context_name = infer_context_name(inp1, inp2)

        inp1 = as_gpuarray_variable(inp1, context_name)
        inp2 = as_gpuarray_variable(inp2, context_name)

        inp1 = gpu_contiguous(inp1)
        inp2 = gpu_contiguous(inp2)

        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == inp2.dtype

        return theano.Apply(
            self,
            [inp1, inp2],
            [
                GpuArrayType(
                    inp1.dtype,
                    broadcastable=inp1.broadcastable,
                    context_name=context_name,
                )()
            ],
        )
Exemplo n.º 6
0
    def make_node(self, inp1, inp2):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCusolverSolve Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn(
                'The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8'
            )
        context_name = basic_ops.infer_context_name(inp1, inp2)

        inp1 = basic_ops.as_gpuarray_variable(inp1, context_name)
        inp2 = basic_ops.as_gpuarray_variable(inp2, context_name)

        inp1 = basic_ops.gpu_contiguous(inp1)
        inp2 = basic_ops.gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(self, [inp1, inp2], [
            GpuArrayType('float32',
                         broadcastable=inp1.broadcastable,
                         context_name=context_name)()
        ])
Exemplo n.º 7
0
    def make_node(self, ten4, neib_shape, neib_step=None):
        ten4 = as_gpuarray_variable(ten4, infer_context_name(ten4))
        neib_shape = tt.as_tensor_variable(neib_shape)
        if neib_step is None:
            neib_step = neib_shape
        else:
            neib_step = tt.as_tensor_variable(neib_step)

        assert ten4.ndim == 4
        assert neib_shape.ndim == 1
        assert neib_step.ndim == 1
        assert neib_shape.dtype in tt.integer_dtypes
        assert neib_step.dtype in tt.integer_dtypes

        return Apply(
            self,
            [ten4, neib_shape, neib_step],
            [
                GpuArrayType(
                    broadcastable=(False, False),
                    dtype=ten4.type.dtype,
                    context_name=ten4.type.context_name,
                )()
            ],
        )
Exemplo n.º 8
0
    def make_node(self, inp):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuLU Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn(
                'The GpuLU op requires scikit-cuda > 0.5.1 to work with CUDA 8'
            )
        if not pygpu_available:
            raise RuntimeError('Missing pygpu or triu/tril functions.'
                               'Install or update libgpuarray.')
        context_name = infer_context_name(inp)

        inp = as_gpuarray_variable(inp, context_name)

        inp = gpu_contiguous(inp)

        # this op can only operate on float32 matrices
        # because of current implementation of triu/tril.
        # TODO: support float64
        assert inp.ndim == 2
        assert inp.dtype == 'float32'

        # outputs LU in a single matrix, and a pivots array
        pivots_type = GpuArrayType('int32',
                                   broadcastable=inp[0].broadcastable,
                                   context_name=context_name)()
        return theano.Apply(self, [inp], [inp.type(), pivots_type])
Exemplo n.º 9
0
    def make_node(self, inp1, inp2):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCusolverSolve Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn('The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8')
        context_name = basic_ops.infer_context_name(inp1, inp2)

        inp1 = basic_ops.as_gpuarray_variable(inp1, context_name)
        inp2 = basic_ops.as_gpuarray_variable(inp2, context_name)

        inp1 = basic_ops.gpu_contiguous(inp1)
        inp2 = basic_ops.gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(
            self, [inp1, inp2],
            [GpuArrayType('float32',
                          broadcastable=inp1.broadcastable,
                          context_name=context_name)()])
Exemplo n.º 10
0
    def make_node(self, inp1, inp2):
        if not cublas_available:
            raise RuntimeError(
                "CUBLAS is not available and "
                "GpuCublasTriangularSolve Op "
                "can not be constructed."
            )
        context_name = infer_context_name(inp1, inp2)

        inp1 = as_gpuarray_variable(inp1, context_name)
        inp2 = as_gpuarray_variable(inp2, context_name)

        inp1 = gpu_contiguous(inp1)
        inp2 = gpu_contiguous(inp2)

        assert inp1.ndim == 2
        assert inp2.ndim in [1, 2]
        assert inp1.dtype == inp2.dtype

        return theano.Apply(
            self,
            [inp1, inp2],
            [
                GpuArrayType(
                    inp1.dtype,
                    broadcastable=inp2.broadcastable,
                    context_name=context_name,
                )()
            ],
        )
Exemplo n.º 11
0
 def make_node(self, A):
     ctx_name = infer_context_name(A)
     A = as_gpuarray_variable(A, ctx_name)
     A = gpu_contiguous(A)
     if A.ndim != 2:
         raise LinAlgError("Matrix rank error")
     if A.dtype != "float32":
         raise TypeError("only `float32` is supported for now")
     if self.compute_uv:
         return theano.Apply(
             self,
             [A],
             # return S, U, VT
             [
                 GpuArrayType(
                     A.dtype, broadcastable=[False], context_name=ctx_name
                 )(),
                 A.type(),
                 A.type(),
             ],
         )
     else:
         return theano.Apply(
             self,
             [A],
             # return only S
             [GpuArrayType(A.dtype, broadcastable=[False], context_name=ctx_name)()],
         )
Exemplo n.º 12
0
    def make_node(self, inp, s=None):
        # A shape parameter s can be provided as an input. For now this is used to
        # manage odd transform sizes.
        # Later this could be extended to handle padding and trunkation,
        # following numpy's interface. However, cuFFT expects array that match
        # the shape given to the plan, so padding will have to be done in the op.
        # The effect of padding on gradients has yet to be investigated.

        if not scikits_cuda_available:
            raise RuntimeError("skcuda is needed for CuFFTOp")

        if not pygpu_available:
            raise RuntimeError("pygpu is needed for CuFFTOp")

        if not pycuda_available:
            raise RuntimeError("pycuda is needed for CuFFTOp")

        inp = basic_ops.gpu_contiguous(
            basic_ops.as_gpuarray_variable(inp,
                                           basic_ops.infer_context_name(inp)))

        # If no shape is provided as input, default to input data shape.
        if s is None:
            s = inp.shape[1:]
        s = T.as_tensor_variable(s)

        assert inp.dtype == "float32"
        assert s.ndim == 1
        assert 'int' in s.dtype

        return theano.Apply(self, [inp, s], [self.output_type(inp)()])
Exemplo n.º 13
0
    def make_node(self, x, ilist):
        ctx_name = infer_context_name(x, ilist)
        x_ = as_gpuarray_variable(x, ctx_name)

        ilist__ = tt.as_tensor_variable(ilist)
        if ilist__.type.dtype not in tt.integer_dtypes:
            raise TypeError("index must be integers")
        if ilist__.type.dtype != "int64":
            ilist__ = tt.cast(ilist__, "int64")

        ilist_ = gpu_contiguous(as_gpuarray_variable(ilist__, ctx_name))

        if ilist_.type.dtype != "int64":
            raise TypeError("index must be int64")
        if ilist_.type.ndim != 1:
            raise TypeError("index must be a vector")
        if x_.type.ndim == 0:
            raise TypeError("cannot index into a scalar")

        bcast = ilist_.broadcastable + x_.broadcastable[1:]
        return gof.Apply(
            self,
            [x_, ilist_],
            [GpuArrayType(dtype=x.dtype, context_name=ctx_name, broadcastable=bcast)()],
        )
Exemplo n.º 14
0
 def make_node(self, A):
     ctx_name = infer_context_name(A)
     A = as_gpuarray_variable(A, ctx_name)
     A = gpu_contiguous(A)
     if A.ndim != 2:
         raise LinAlgError("Matrix rank error")
     if A.dtype != "float32":
         raise TypeError("only `float32` is supported for now")
     return theano.Apply(self, [A], [A.type()])
Exemplo n.º 15
0
 def make_node(self, x, *inputs):
     ctx_name = infer_context_name(x)
     rval = AdvancedSubtensor.make_node(self, x, *inputs)
     otype = GpuArrayType(
         dtype=rval.outputs[0].type.dtype,
         broadcastable=rval.outputs[0].type.broadcastable,
         context_name=ctx_name,
     )
     x = as_gpuarray_variable(x, ctx_name)
     return gof.Apply(self, [x] + rval.inputs[1:], [otype()])
def deconv(X, w, subsample=(1, 1), border_mode=(0, 0), conv_mode='conv'):
    img = gpu_contiguous(T.cast(X, 'float32'))
    kerns = gpu_contiguous(T.cast(w, 'float32'))
    desc = GpuDnnConvDesc(border_mode=border_mode,
                          subsample=subsample,
                          conv_mode=conv_mode)(kerns.shape)
    out = GpuAllocEmpty(dtype='float32', context_name=infer_context_name(X))(
        img.shape[0], kerns.shape[1], img.shape[2] * subsample[0],
        img.shape[3] * subsample[1])
    d_img = GpuDnnConvGradI()(kerns, img, out, desc)
    return d_img
Exemplo n.º 17
0
    def make_node(self, x, ilist):
        ctx_name = infer_context_name(x, ilist)
        x_ = as_gpuarray_variable(x, ctx_name)
        ilist_ = as_gpuarray_variable(ilist, ctx_name)

        if ilist_.type.dtype not in tensor.integer_dtypes:
            raise TypeError('index must be integers')
        if ilist_.type.ndim != 1:
            raise TypeError('index must be vector')
        if x_.type.ndim == 0:
            raise TypeError('cannot index into a scalar')
        return gof.Apply(self, [x_, ilist_], [x_.type()])
Exemplo n.º 18
0
    def make_node(self, _x):
        ctx_name = infer_context_name(_x)
        x = as_gpuarray_variable(_x, ctx_name)

        if x.ndim < 2:
            raise ValueError("Diagonal needs an input with 2 or more " "dimensions", x)
        axis_small, axis_large = sorted((self.axis1, self.axis2))
        broadcastable = (
            x.broadcastable[:axis_small]
            + x.broadcastable[axis_small + 1 : axis_large]
            + x.broadcastable[axis_large + 1 :]
            + (False,)
        )
        return gof.Apply(self, [x], [x.type.clone(broadcastable=broadcastable)()])
Exemplo n.º 19
0
    def make_node(self, inp1, inp2):
        ctx = infer_context_name(inp1, inp2)
        inp1 = gpu_ops.as_gpuarray_variable(inp1, ctx)
        inp2 = gpu_ops.as_gpuarray_variable(inp2, ctx)

        assert inp1.dtype == "float32"
        assert inp2.dtype == "float32"
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        otype = GpuArrayType(dtype=inp1.dtype,
                             broadcastable=(False, False),
                             context_name=ctx)

        return Apply(self, [inp1, inp2], [otype()])
Exemplo n.º 20
0
    def make_node(self, activations, labels, input_lengths):
        context_name = infer_context_name(activations)
        t_activations = as_gpuarray_variable(activations,
                                             context_name=context_name)
        # Ensure activations array is C-contiguous
        t_activations = gpu_contiguous(t_activations)

        # Labels and input lengths are always on the CPU
        t_labels = tt.as_tensor_variable(labels)
        t_input_lengths = tt.as_tensor_variable(input_lengths)

        if t_activations.type.dtype != "float32":
            raise TypeError("activations must use the float32 type.")

        if t_activations.ndim != 3:
            raise ValueError("activations must have 3 dimensions.")

        if t_labels.type.dtype != "int32":
            raise TypeError("labels must use the int32 type.")

        if t_labels.ndim != 2:
            raise ValueError("labels must have 2 dimensions.")

        if t_input_lengths.type.dtype != "int32":
            raise TypeError("input_lengths must use the int32 type.")

        if t_input_lengths.ndim != 1:
            raise ValueError("input_lengths must have 1 dimension.")

        costs = GpuArrayType(dtype="float32",
                             broadcastable=(False, ),
                             context_name=context_name)()
        outputs = [costs]

        if self.compute_grad:
            gradients = GpuArrayType(
                dtype="float32",
                broadcastable=(
                    False,
                    False,
                    False,
                ),
                context_name=context_name,
            )()
            outputs += [gradients]

        return theano.Apply(self,
                            inputs=[t_activations, t_labels, t_input_lengths],
                            outputs=outputs)
Exemplo n.º 21
0
    def make_node(self, x, truth):
        context_name = basic_ops.infer_context_name(x, truth)
        x = basic_ops.gpu_contiguous(x)
        truth = basic_ops.gpu_contiguous(truth)

        if self.return_extras:
            return theano.Apply(self, [x, truth], [
                T.scalar(),
                T.vector('int32'),
                T.scalar(),
                T.scalar(),
                T.scalar()
            ])
        else:
            return theano.Apply(self, [x, truth], [T.scalar()])
Exemplo n.º 22
0
 def make_node(self, diag):
     ctx_name = infer_context_name(diag)
     diag = as_gpuarray_variable(diag, ctx_name)
     if diag.type.ndim < 1:
         raise ValueError(
             "AllocDiag needs an input with 1 or more " "dimensions", diag.type
         )
     return gof.Apply(
         self,
         [diag],
         [
             diag.type.__class__(
                 dtype=diag.dtype, broadcastable=[False] * (diag.ndim + 1)
             )()
         ],
     )
Exemplo n.º 23
0
def local_abstractconv_cudnn(node):
    ctx = infer_context_name(*node.inputs)
    if not isinstance(node.inputs[0].type, GpuArrayType):
        return
    if node.op.unshared:
        return None
    if isinstance(node.op.border_mode, tuple) and any(
            isinstance(p, tuple) for p in node.op.border_mode):
        # Asymmetric padding not yet supported
        return None
    if isinstance(node.op, AbstractConv2d):
        with inherit_stack_trace(node.outputs):
            return local_abstractconv_cudnn_graph(node.op, ctx, node.inputs,
                                                  node.outputs)
    elif isinstance(node.op, AbstractConv3d):
        with inherit_stack_trace(node.outputs):
            return local_abstractconv3d_cudnn_graph(node.op, ctx, node.inputs,
                                                    node.outputs)
Exemplo n.º 24
0
    def make_node(self, inp):
        if not cusolver_available:
            raise RuntimeError("CUSOLVER is not available and "
                               "GpuCholesky Op can not be constructed.")
        if skcuda.__version__ <= "0.5.1":
            warnings.warn("The GpuCholesky op requires scikit-cuda > "
                          "0.5.1 to work with CUDA 8")
        if not pygpu_available:
            raise RuntimeError("Missing pygpu or triu/tril functions."
                               "Install or update libgpuarray.")
        context_name = infer_context_name(inp)

        inp = as_gpuarray_variable(inp, context_name)

        inp = gpu_contiguous(inp)

        assert inp.ndim == 2

        return theano.Apply(self, [inp], [inp.type()])
Exemplo n.º 25
0
    def make_node(self, inp1, inp2):
        self.context = basic_ops.infer_context_name(inp1, inp2)

        inp1 = basic_ops.as_gpuarray_variable(inp1, self.context)
        inp2 = basic_ops.as_gpuarray_variable(inp2, self.context)

        inp1 = basic_ops.gpu_contiguous(inp1)
        inp2 = basic_ops.gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(self, [inp1, inp2], [
            GpuArrayType('float32',
                         broadcastable=inp1.broadcastable,
                         context_name=self.context)()
        ])
Exemplo n.º 26
0
    def make_node(self, inp1, inp2):
        self.context = basic_ops.infer_context_name(inp1, inp2)

        inp1 = basic_ops.as_gpuarray_variable(inp1, self.context)
        inp2 = basic_ops.as_gpuarray_variable(inp2, self.context)

        inp1 = basic_ops.gpu_contiguous(inp1)
        inp2 = basic_ops.gpu_contiguous(inp2)

        # this op can only operate on float32 matrices
        assert inp1.ndim == 2
        assert inp2.ndim == 2
        assert inp1.dtype == 'float32'
        assert inp2.dtype == 'float32'

        return theano.Apply(
            self, [inp1, inp2],
            [GpuArrayType('float32',
                          broadcastable=inp1.broadcastable,
                          context_name=self.context)()])
Exemplo n.º 27
0
    def make_node(self, inp):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCholesky Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn('The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8')
        if not pygpu_available:
            raise RuntimeError('Missing pygpu or triu/tril functions.'
                               'Install or update libgpuarray.')
        context_name = basic_ops.infer_context_name(inp)

        inp = basic_ops.as_gpuarray_variable(inp, context_name)

        inp = basic_ops.gpu_contiguous(inp)

        # this op can only operate on float32 matrices
        # because of current implementation of triu/tril.
        # TODO: support float64 for triu/tril in GpuArray and for GpuCholesky/GpuCusolverSolve in Theano.
        assert inp.ndim == 2
        assert inp.dtype == 'float32'

        return theano.Apply(self, [inp], [inp.type()])
Exemplo n.º 28
0
    def make_node(self, inp):
        if not cusolver_available:
            raise RuntimeError('CUSOLVER is not available and '
                               'GpuCholesky Op can not be constructed.')
        if skcuda.__version__ <= '0.5.1':
            warnings.warn(
                'The GpuSolve op requires scikit-cuda > 0.5.1 to work with CUDA 8'
            )
        if not pygpu_available:
            raise RuntimeError('Missing pygpu or triu/tril functions.'
                               'Install or update libgpuarray.')
        context_name = basic_ops.infer_context_name(inp)

        inp = basic_ops.as_gpuarray_variable(inp, context_name)

        inp = basic_ops.gpu_contiguous(inp)

        # this op can only operate on float32 matrices
        # because of current implementation of triu/tril.
        # TODO: support float64 for triu/tril in GpuArray and for GpuCholesky/GpuCusolverSolve in Theano.
        assert inp.ndim == 2
        assert inp.dtype == 'float32'

        return theano.Apply(self, [inp], [inp.type()])
Exemplo n.º 29
0
 def make_node(self, x):
     ctx_name = infer_context_name(x)
     x = as_gpuarray_variable(x, ctx_name)
     return Apply(self, [x], [x.type()])
Exemplo n.º 30
0
def local_abstractconv_cudnn_alt(node):
    if not isinstance(node.op, (AbstractConv2d, AbstractConv2d_gradWeights,
                                AbstractConv2d_gradInputs)):
        return

    if version(raises=False) < 6000 and node.op.filter_dilation != (1, 1):
        return None
    if node.op.unshared:
        return None
    if isinstance(node.op.border_mode, tuple) and any(
            isinstance(p, tuple) for p in node.op.border_mode):
        # Asymmetric padding not yet supported
        return None
    inp1 = node.inputs[0]
    inp2 = node.inputs[1]

    if not dnn_available(inp1.type.context_name):
        return

    op = node.op
    border_mode = node.op.border_mode
    subsample = node.op.subsample
    filter_dilation = node.op.filter_dilation
    num_groups = node.op.num_groups
    precision, _ = get_precision(None, [inp1, inp2])

    if node.op.filter_flip:
        conv_mode = "conv"
    else:
        conv_mode = "cross"

    if isinstance(op, AbstractConv2d):
        if border_mode == "half" or subsample != (1, 1) or num_groups != 1:
            return None
        if border_mode == "full":
            direction_hint = "bprop inputs"
        elif border_mode == "valid" and filter_dilation == (1, 1):
            direction_hint = "bprop weights"
        else:
            return None

        rval = dnn_conv(
            inp1,
            inp2,
            border_mode=border_mode,
            subsample=subsample,
            dilation=filter_dilation,
            direction_hint=direction_hint,
            conv_mode=conv_mode,
            num_groups=num_groups,
        )

    elif isinstance(op, AbstractConv2d_gradWeights):
        if (border_mode == "valid" and subsample == (1, 1)
                and filter_dilation == (1, 1) and num_groups == 1):
            img = gpu_contiguous(inp1)
            topgrad = gpu_contiguous(inp2)
            ctx_name = infer_context_name(img, topgrad)
            img = gpu_contiguous(img.dimshuffle(1, 0, 2, 3))
            topgrad = gpu_contiguous(topgrad.dimshuffle(1, 0, 2, 3))
            ishape = [shape_i_op(i)(img) for i in range(img.ndim)]
            tshape = [shape_i_op(i)(topgrad) for i in range(topgrad.ndim)]
            out_shp = get_conv_output_shape(
                ishape,
                tshape,
                border_mode=border_mode,
                subsample=subsample,
                filter_dilation=filter_dilation,
            )

            out_shp = assert_conv_shape(out_shp)
            out = GpuAllocEmpty(dtype=img.dtype,
                                context_name=ctx_name)(*out_shp)
            desc = GpuDnnConvDesc(
                border_mode=border_mode,
                subsample=subsample,
                dilation=filter_dilation,
                conv_mode="cross",
                precision=precision,
            )(out.shape)

            conv = GpuDnnConv(algo=None, num_groups=num_groups)(img, topgrad,
                                                                out, desc)
            if conv_mode == "conv":
                conv = conv[:, :, ::-1, ::-1]

            rval = as_gpuarray_variable(conv.dimshuffle(1, 0, 2, 3), ctx_name)
        else:
            return None

    elif isinstance(op, AbstractConv2d_gradInputs):
        if border_mode == "valid" and subsample == (1, 1) and num_groups == 1:
            kerns = gpu_contiguous(inp1.dimshuffle(1, 0, 2, 3))
            topgrad = gpu_contiguous(inp2)
            ctx_name = infer_context_name(kerns, topgrad)
            conv_mode = "cross" if conv_mode == "conv" else "conv"
            desc = GpuDnnConvDesc(
                border_mode="full",
                subsample=subsample,
                dilation=filter_dilation,
                conv_mode=conv_mode,
                precision=precision,
            )(kerns.shape)

            tshape = [shape_i_op(i)(topgrad) for i in range(topgrad.ndim)]
            kshape = [shape_i_op(i)(kerns) for i in range(kerns.ndim)]
            shape = get_conv_output_shape(
                tshape,
                kshape,
                border_mode="full",
                subsample=subsample,
                filter_dilation=filter_dilation,
            )

            shape = assert_conv_shape(shape)
            out = GpuAllocEmpty(dtype=topgrad.dtype,
                                context_name=ctx_name)(*shape)
            rval = GpuDnnConv(algo=None, num_groups=num_groups)(topgrad, kerns,
                                                                out, desc)
        else:
            return None

    return [rval]
 def make_node(self, x):
     x = as_gpuarray_variable(x, infer_context_name(x))
     return theano.Apply(self, [x], [x.type()])
Exemplo n.º 32
0
 def make_node(self, x):
     ctx_name = infer_context_name(x)
     x = as_gpuarray_variable(x, ctx_name)
     return Apply(self, [x], [x.type()])