Exemplo n.º 1
0
    def test_no_leak_many_call_lazy():
        # Verify no memory leaks when calling a function a lot of times

        # This isn't really a unit test, you have to run it and look at top to
        # see if there's a leak

        def build_graph(x, depth=5):
            z = x
            for d in range(depth):
                z = ifelse(z.mean() > 0.5, -z, z)
            return z

        def time_linker(name, linker):
            steps_a = 10
            x = tensor.dvector()
            a = build_graph(x, steps_a)

            f_a = function([x], a, mode=Mode(optimizer=None, linker=linker()))
            inp = np.random.rand(1000000)
            for i in range(100):
                f_a(inp)
                # this doesn't seem to work, prints 0 for everything
                # import resource
                #
                # pre = resource.getrusage(resource.RUSAGE_SELF)
                # post = resource.getrusage(resource.RUSAGE_SELF)
                # print(pre.ru_ixrss, post.ru_ixrss)
                # print(pre.ru_idrss, post.ru_idrss)
                # print(pre.ru_maxrss, post.ru_maxrss)

        print(1)
        time_linker("vmLinker_C", lambda: VMLinker(allow_gc=False, use_cloop=True))
        print(2)
        time_linker("vmLinker", lambda: VMLinker(allow_gc=False, use_cloop=False))
Exemplo n.º 2
0
def test_reallocation():
    x = tensor.scalar("x")
    y = tensor.scalar("y")
    z = tensor.tanh(3 * x + y) + tensor.cosh(x + 5 * y)
    # The functinality is currently implement for non lazy and non c VM only.
    for linker in [
            VMLinker(allow_gc=False, lazy=False, use_cloop=False),
            VMLinker(allow_gc=True, lazy=False, use_cloop=False),
    ]:
        m = theano.compile.get_mode(theano.Mode(linker=linker))
        m = m.excluding("fusion", "inplace")

        f = theano.function([x, y], z, name="test_reduce_memory", mode=m)
        output = f(1, 2)
        assert output
        storage_map = f.fn.storage_map

        def check_storage(storage_map):
            from theano.tensor.var import TensorConstant

            for i in storage_map:
                if not isinstance(i, TensorConstant):
                    keys_copy = list(storage_map.keys())[:]
                    keys_copy.remove(i)
                    for o in keys_copy:
                        if storage_map[i][
                                0] and storage_map[i][0] is storage_map[o][0]:
                            return [True, storage_map[o][0]]
            return [False, None]

        assert check_storage(storage_map)[0]
        assert len({id(v) for v in storage_map.values()}) < len(storage_map)
Exemplo n.º 3
0
    def test_no_leak_many_call_nonlazy():
        # Verify no memory leaks when calling a function a lot of times

        # This isn't really a unit test, you have to run it and look at top to
        # see if there's a leak.

        def build_graph(x, depth=5):
            z = x
            for d in range(depth):
                z = tensor.sin(-z + 1)
            return z

        def time_linker(name, linker):
            steps_a = 10
            x = tensor.dvector()
            a = build_graph(x, steps_a)

            f_a = function([x], a, mode=Mode(optimizer=None, linker=linker()))
            inp = np.random.rand(1000000)
            for i in range(500):
                f_a(inp)

        print(1)
        time_linker("vmLinker_C",
                    lambda: VMLinker(allow_gc=False, use_cloop=True))
        print(2)
        time_linker("vmLinker",
                    lambda: VMLinker(allow_gc=False, use_cloop=False))
Exemplo n.º 4
0
def test_no_recycling():
    x = theano.tensor.vector()
    for lnk in [
            VMLinker(use_cloop=True),
            VMLinker(use_cloop=False, lazy=True),
            VMLinker(use_cloop=False, lazy=False, allow_gc=True),
            VMLinker(use_cloop=False, lazy=False, allow_gc=False),
    ]:

        mode = theano.Mode(optimizer="fast_compile", linker=lnk)
        f = theano.function([x], x + 1, mode=mode)
        f2 = theano.function([x], (x + 1) * 2, mode=mode)
        m1 = f.fn.thunks[0].thunk.module
        m2 = f2.fn.thunks[0].thunk.module
        assert m1 is m2
Exemplo n.º 5
0
def test_partial_function_with_updates():
    def check_updates(linker_name):
        x = tensor.lscalar("input")
        y = theano.shared(np.asarray(1, "int64"), name="global")
        f = theano.function(
            [x],
            [x, x + 34],
            updates=[(y, x + 1)],
            mode=Mode(optimizer=None, linker=linker_name),
        )
        g = theano.function(
            [x],
            [x - 6],
            updates=[(y, y + 3)],
            mode=Mode(optimizer=None, linker=linker_name),
        )

        assert f(3, output_subset=[]) == []
        assert y.get_value() == 4
        assert g(30, output_subset=[0]) == [24]
        assert g(40, output_subset=[]) == []
        assert y.get_value() == 10

    check_updates(VMLinker(allow_partial_eval=True, use_cloop=False))
    check_updates("cvm")
Exemplo n.º 6
0
def test_VMLinker_make_vm_cvm():
    # We don't want this at module level, since CXX might not be present
    from theano.link.c.cvm import CVM

    a = tensor.scalar()
    linker = VMLinker(allow_gc=False, use_cloop=True)

    f = function([a], a, mode=Mode(optimizer=None, linker=linker))
    assert isinstance(f.fn, CVM)
Exemplo n.º 7
0
    def test_callback_with_ifelse(self):
        a, b, c = tensor.scalars("abc")
        f = function(
            [a, b, c],
            ifelse(a, 2 * b, 2 * c),
            mode=Mode(optimizer=None, linker=VMLinker(callback=self.callback)),
        )

        f(1, 2, 3)
        assert self.n_callbacks["IfElse"] == 2
Exemplo n.º 8
0
    def test_callback(self):
        a, b, c = tensor.scalars("abc")
        f = function(
            [a, b, c],
            (a + b) + c,
            mode=Mode(optimizer=None, linker=VMLinker(callback=self.callback)),
        )

        f(1, 2, 3)
        assert sum(self.n_callbacks.values()) == len(f.maker.fgraph.toposort())
        f(1, 2, 3)
        assert sum(self.n_callbacks.values()) == len(f.maker.fgraph.toposort()) * 2
Exemplo n.º 9
0
def test_speed_lazy():
    def build_graph(x, depth=5):
        z = x
        for d in range(depth):
            z = ifelse(z[0] > 0, -z, z)
        return z

    def time_linker(name, linker):
        steps_a = 10
        steps_b = 100
        x = tensor.vector()
        a = build_graph(x, steps_a)
        b = build_graph(x, steps_b)

        f_a = function([x], a, mode=Mode(optimizer=None, linker=linker()))
        f_b = function([x], b, mode=Mode(optimizer=None, linker=linker()))

        f_a([2.0])
        t0 = time.time()
        f_a([2.0])
        t1 = time.time()

        f_b([2.0])

        t2 = time.time()
        f_b([2.0])
        t3 = time.time()

        t_a = t1 - t0
        t_b = t3 - t2

        print(
            f"{name} takes {1000 * (t_b - t_a) / (steps_b - steps_a):f} s/Kop")

    time_linker("vmLinker", VMLinker)
    time_linker("vmLinker_nogc", lambda: VMLinker(allow_gc=False))
    if theano.config.cxx:
        time_linker("vmLinker_C",
                    lambda: VMLinker(allow_gc=False, use_cloop=True))
Exemplo n.º 10
0
def test_partial_function_with_output_keys():
    def check_partial_function_output_keys(linker_name):
        x = tensor.scalar("input")
        y = 3 * x
        f = theano.function(
            [x], {"a": y * 5, "b": y - 7}, mode=Mode(optimizer=None, linker=linker_name)
        )

        assert f(5, output_subset=["a"])["a"] == f(5)["a"]

    check_partial_function_output_keys(
        VMLinker(allow_partial_eval=True, use_cloop=False)
    )
    check_partial_function_output_keys("cvm")
Exemplo n.º 11
0
def test_VMLinker_no_cxx():
    from importlib import reload
    from unittest.mock import patch

    with config.change_flags(cxx=""):
        with pytest.raises(MissingGXX):
            import theano.link.c.cvm

            reload(theano.link.c.cvm)

        with patch.dict("sys.modules", {"theano.link.c.cvm": None}):
            linker = VMLinker(allow_gc=False, use_cloop=True)
            a = tensor.scalar()

            with pytest.raises(ModuleNotFoundError):
                _ = function([a], a, mode=Mode(optimizer=None, linker=linker))
Exemplo n.º 12
0
def test_vm_gc():
    # This already caused a bug in the trunk of Theano.
    #
    # The bug was introduced in the trunk on July 5th, 2012 and fixed on
    # July 30th.

    x = theano.tensor.vector()
    p = RunOnce()(x)
    mode = theano.Mode(linker=VMLinker(lazy=True))
    f = theano.function([theano.In(x, mutable=True)], [p + 1, p + 2], mode=mode)
    f([1, 2, 3])

    p = RunOnce()(x)
    pp = p + p
    f = theano.function([x], [pp + pp], mode=mode)
    f([1, 2, 3])
Exemplo n.º 13
0
def test_c_thunks():
    a = tensor.scalars("a")
    b, c = tensor.vectors("bc")
    cases = [False]
    if theano.config.cxx:
        cases.append(True)
    for c_thunks in cases:
        f = function(
            [a, b, c],
            ifelse(a, a * b, b * c),
            mode=Mode(optimizer=None,
                      linker=VMLinker(c_thunks=c_thunks, use_cloop=False)),
        )
        f(1, [2], [3, 2])
        with pytest.raises(ValueError):
            f(0, [2], [3, 4])
        assert any([hasattr(t, "cthunk") for t in f.fn.thunks]) == c_thunks
Exemplo n.º 14
0
def test_partial_function():
    from tests import unittest_tools as utt

    def check_partial_function(linker_name):
        x = tensor.scalar("input")
        y = x**2
        f = theano.function([x], [y + 7, y - 9, y / 14.0],
                            mode=Mode(optimizer=None, linker=linker_name))

        assert f(3, output_subset=[0, 1, 2]) == f(3)
        assert f(4, output_subset=[0, 2]) == [f(4)[0], f(4)[2]]
        utt.assert_allclose(f(5), np.array([32.0, 16.0, 1.7857142857142858]))

    check_partial_function(VMLinker(allow_partial_eval=True, use_cloop=False))
    if not theano.config.cxx:
        pytest.skip("Need cxx for this test")
    check_partial_function("cvm")
Exemplo n.º 15
0
def test_VMLinker_make_vm_no_cvm():
    from importlib import reload
    from unittest.mock import patch

    with config.change_flags(cxx=""):

        # Make sure that GXX isn't present
        with pytest.raises(MissingGXX):
            import theano.link.c.cvm

            reload(theano.link.c.cvm)

        # Make sure that `cvm` module is missing
        with patch.dict("sys.modules", {"theano.link.c.cvm": None}):
            a = tensor.scalar()
            linker = VMLinker(allow_gc=False, use_cloop=True)

            with pytest.raises(ModuleNotFoundError):
                import theano.link.c.cvm

            f = function([a], a, mode=Mode(optimizer=None, linker=linker))
            assert isinstance(f.fn, Loop)
Exemplo n.º 16
0
def test_speed():
    def build_graph(x, depth=5):
        z = x
        for d in range(depth):
            z = z + z
        return z

    def numpy_version(x, depth):
        z = x
        for d in range(depth):
            z = z + z
        return z

    def time_numpy():
        steps_a = 5
        steps_b = 100
        x = np.asarray([2.0, 3.0], dtype=theano.config.floatX)

        numpy_version(x, steps_a)
        t0 = time.time()
        # print numpy_version(x, steps_a)
        t1 = time.time()
        t2 = time.time()
        # print numpy_version(x, steps_b)
        t3 = time.time()
        t_a = t1 - t0
        t_b = t3 - t2

        print(
            f"numpy takes {1000 * (t_b - t_a) / (steps_b - steps_a):f} s/Kop")

    def time_linker(name, linker):
        steps_a = 5
        steps_b = 100
        x = tensor.vector()
        a = build_graph(x, steps_a)
        b = build_graph(x, steps_b)

        f_a = function([x], a, mode=Mode(optimizer=None, linker=linker()))
        f_b = function([x], b, mode=Mode(optimizer=None, linker=linker()))

        f_a([2.0, 3.0])
        t0 = time.time()
        f_a([2.0, 3.0])
        t1 = time.time()

        f_b([2.0, 3.0])

        t2 = time.time()
        f_b([2.0, 3.0])
        t3 = time.time()

        t_a = t1 - t0
        t_b = t3 - t2

        print(
            f"{name} takes {1000 * (t_b - t_a) / (steps_b - steps_a):f} s/Kop")

    from theano.link.c.basic import OpWiseCLinker

    time_linker("c|py", OpWiseCLinker)
    time_linker("vmLinker", VMLinker)
    time_linker("vmLinker_nogc", lambda: VMLinker(allow_gc=False))
    if theano.config.cxx:
        time_linker("vmLinker_CLOOP",
                    lambda: VMLinker(allow_gc=False, use_cloop=True))
    time_numpy()
Exemplo n.º 17
0
from theano.link.basic import PerformLinker
from theano.link.c.basic import CLinker, OpWiseCLinker
from theano.link.jax import JAXLinker
from theano.link.vm import VMLinker

_logger = logging.getLogger("theano.compile.mode")

# If a string is passed as the linker argument in the constructor for
# Mode, it will be used as the key to retrieve the real linker in this
# dictionary
predefined_linkers = {
    "py": PerformLinker(),  # Use allow_gc Theano flag
    "c": CLinker(),  # Don't support gc. so don't check allow_gc
    "c|py": OpWiseCLinker(),  # Use allow_gc Theano flag
    "c|py_nogc": OpWiseCLinker(allow_gc=False),
    "vm": VMLinker(use_cloop=False),  # Use allow_gc Theano flag
    "cvm": VMLinker(use_cloop=True),  # Use allow_gc Theano flag
    "vm_nogc": VMLinker(allow_gc=False, use_cloop=False),
    "cvm_nogc": VMLinker(allow_gc=False, use_cloop=True),
    "jax": JAXLinker(),
}


def register_linker(name, linker):
    """Add a `Linker` which can be referred to by `name` in `Mode`."""
    if name in predefined_linkers:
        raise ValueError(f"Linker name already taken: {name}")
    predefined_linkers[name] = linker


# If a string is passed as the optimizer argument in the constructor
Exemplo n.º 18
0
    def __init__(self, record=None, **kwargs):
        """
        Takes either a Record object or the keyword arguments to make one.

        Parameters
        ----------
        record : Record
            The existing Record object to use.
        kwargs : pointer?
            Keyword arguments to construct new object.
        """

        if record is None:
            record = Record(**kwargs)
        else:
            assert len(kwargs.keys()) == 0

        self.set_record(record)

        def handle_line(fgraph, line, i, node, fn):
            """
            Records new node computation.

            Parameters
            ----------
            line : string
                Line to record. For example, the function name or node name.
            i : integer
                Node number in the toposort order.
            node : Apply,
                The Apply node which created the entry.
            fn : Function,
                Function related to Apply node.
            """
            try:
                self.record.handle_line(line)
            except MismatchError as e:
                print("Got this MismatchError:")
                print(e)
                print(f"while processing node i={i}:")
                print(f"str(node):{node}")
                print("Symbolic inputs: ")
                for elem in node.inputs:
                    print(min_informative_str(elem))
                print("str(output) of outputs: ")
                for elem in fn.outputs:
                    assert isinstance(elem, list)
                    (elem, ) = elem
                    print(str(elem))
                print(f"function name: {fgraph.name}")
                raise MismatchError("Non-determinism detected by WrapLinker")

        def callback(fgraph, i, node, fn):
            """
            Function called by Apply nodes at the end of each computation?
            """

            if fgraph.name is None:
                raise ValueError(
                    "Un-named functions are not allowed with RecordMode, "
                    "because they make it impossible to tell if the same function is "
                    "running during the playback.")

            if fgraph not in self.known_fgraphs:
                assert not any(
                    [elem.name == fgraph.name for elem in self.known_fgraphs])
                self.known_fgraphs.add(fgraph)
                num_app = len(fgraph.apply_nodes)
                line = f"Function {fgraph.name} has {num_app} apply nodes.\n"
                handle_line(fgraph, line, i, node, fn)

            line = f"Function name: {fgraph.name}\n"
            handle_line(fgraph, line, i, node, fn)
            line = f"Node {i}:{node}\n"
            handle_line(fgraph, line, i, node, fn)
            assert all(
                [isinstance(x, list) and len(x) == 1 for x in fn.inputs])

            def digest(x):
                x = x[0]
                return hex_digest(x)

            inputs_digest = " ".join([digest(x) for x in fn.inputs])
            line = f"Inputs: {inputs_digest}\n"
            handle_line(fgraph, line, i, node, fn)
            fn()
            outputs_digest = " ".join([digest(x) for x in fn.outputs])
            line = f"Outputs: {outputs_digest}\n"
            handle_line(fgraph, line, i, node, fn)

        # linker = theano.link.c.basic.OpWiseCLinker()
        linker = VMLinker(use_cloop=bool(config.cxx))

        wrap_linker = WrapLinkerMany([linker], [callback])
        super().__init__(wrap_linker, optimizer="fast_run")