Exemplo n.º 1
0
    def mkl_pool_func(*inputs):
        mkl_ver = theano.sandbox.mkl.mkl_version()
        if inputs[2] and isinstance(mkl_ver, integer_types) and (mkl_ver < 20170206):
            raise SkipTest("Need newer MKL to support 'ignore_border=True'.")

        if len(inputs) == 5:
            # self, images, ignore_border, mode, ds
            _, images, ignore_border, mode, ds, = inputs
            x_internal = U2IPool(ignore_border=ignore_border,
                                 mode=mode)(images, ds)
            poolOut = Pool(ignore_border=ignore_border,
                           mode=mode)(x_internal, ds)
            output = I2U()(poolOut)
        elif len(inputs) == 6:
            # self, images, ignore_border, mode, ds, st,
            _, images, ignore_border, mode, ds, st, = inputs
            x_internal = U2IPool(ignore_border=ignore_border,
                                 mode=mode)(images, ds, st)
            poolOut = Pool(ignore_border=ignore_border,
                           mode=mode)(x_internal, ds, st)
            output = I2U()(poolOut)
        elif len(inputs) == 7:
            # self, images, ignore_border, mode, ds, st, pad
            _, images, ignore_border, mode, ds, st, pad = inputs
            x_internal = U2IPool(ignore_border=ignore_border,
                                 mode=mode)(images, ds, st, pad)
            poolOut = Pool(ignore_border=ignore_border,
                           mode=mode)(x_internal, ds, st, pad)
            output = I2U()(poolOut)
        else:
            raise ValueError("incorrect inputs list, should be 4 ~ 6 parameters!")

        return output
Exemplo n.º 2
0
    def test_conv_with_bias(self):
        images = T.dtensor4('inputs')
        weights = T.dtensor4('weights')
        bias = T.dvector('bias')

        ishape = [(8, 3, 256, 256), (16, 3, 256, 256), (32, 3, 256, 256), (64, 3, 256, 256)]
        wshape = [(8, 3, 3, 3), (16, 3, 3, 3), (32, 3, 3, 3), (64, 3, 3, 3)]

        for i, ish in enumerate(ishape):
            wsh = wshape[i]
            images_internal = U2IConv(imshp=ish, kshp=wsh)(images)
            convOutBias_internal = Conv2D(imshp=ish, kshp=wsh, filter_flip=False)(images_internal, weights, bias)
            convOutBias_user = I2U()(convOutBias_internal)

            ival = numpy.random.rand(*ish).astype(numpy.float64)
            wval = numpy.random.rand(*wsh).astype(numpy.float64)
            bval = numpy.random.rand(wsh[0]).astype(numpy.float64)

            fopt = theano.function(inputs=[images, weights, bias], outputs=convOutBias_user, mode=mode_with_mkl)
            new_old = fopt(ival, wval, bval)

            convOut = conv2d(images, weights, input_shape=ish, filter_shape=wsh, filter_flip=False)
            convOutBias = convOut + bias.dimshuffle('x', 0, 'x', 'x')
            fori = theano.function(inputs=[images, weights, bias], outputs=convOutBias, mode=mode_without_mkl)
            old_out = fori(ival, wval, bval)

            assert str(fopt.maker.fgraph.toposort()) != str(fori.maker.fgraph.toposort())
            assert numpy.allclose(old_out, new_old)
Exemplo n.º 3
0
def local_lrn_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, mkl_lrn.AbstractLRN):
        return

    if node.inputs[0].type.ndim != 4:
        return

    try:
        x, = node.inputs
        x_u2i = U2ILRN(alpha=node.op.alpha,
                       beta=node.op.beta,
                       k=node.op.k,
                       n=node.op.n)(x)
        lrnout = mkl_lrn.LRN(alpha=node.op.alpha,
                             beta=node.op.beta,
                             k=node.op.k,
                             n=node.op.n)(x_u2i)
        z_i2u = I2U()(lrnout)
        rval = z_i2u
        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 4
0
    def test_conv_no_bias(self):
        images = T.dtensor4('input_conv')
        weights = T.dtensor4('weights')

        images_internal = U2IConv(imshp=(12, 3, 256, 256), kshp=(12, 3, 3, 3))(images)

        convOut = Conv2D(imshp=(12, 3, 256, 256), kshp=(12, 3, 3, 3), filter_flip=False)(images_internal, weights)
        convOut_user = I2U()(convOut)
        convOutLoss = T.mean(convOut_user)
        conv_op_di = T.grad(convOutLoss, images)
        conv_op_dk = T.grad(convOutLoss, weights)
        convOutBack = [conv_op_di, conv_op_dk]

        ival = numpy.random.rand(12, 3, 256, 256).astype(numpy.float64)
        wval = numpy.random.rand(12, 3, 3, 3).astype(numpy.float64)

        fopt = theano.function(inputs=[images, weights], outputs=convOutBack, mode=mode_with_mkl)
        new_out = fopt(ival, wval)

        convOut = conv2d(images, weights, input_shape=(12, 3, 256, 256), filter_shape=(12, 3, 3, 3), filter_flip=False)
        convOutLoss = T.mean(convOut)
        conv_op_di = T.grad(convOutLoss, images)
        conv_op_dk = T.grad(convOutLoss, weights)
        convOutBack = [conv_op_di, conv_op_dk]

        fori = theano.function(inputs=[images, weights], outputs=convOutBack, mode=mode_without_mkl)
        old_out = fori(ival, wval)

        assert len(fopt.maker.fgraph.toposort()) != len(fori.maker.fgraph.toposort())
        assert numpy.allclose(old_out[0], new_out[0])
        assert new_out[0].dtype == 'float64'
Exemplo n.º 5
0
    def test_conv_no_bias(self):
        images = T.dtensor4('inputs')
        weights = T.dtensor4('weights')

        images_internal = U2IConv(imshp=(12, 3, 256, 256),
                                  kshp=(12, 3, 3, 3))(images)
        convOut_internal = Conv2D(imshp=(12, 3, 256, 256),
                                  kshp=(12, 3, 3, 3),
                                  filter_flip=False)(images_internal, weights)
        convOut_user = I2U()(convOut_internal)

        ival = numpy.random.rand(12, 3, 256, 256).astype(numpy.float64)
        wval = numpy.random.rand(12, 3, 3, 3).astype(numpy.float64)

        fopt = theano.function(inputs=[images, weights],
                               outputs=convOut_user,
                               mode=mode_with_mkl)
        new_out = fopt(ival, wval)

        convOut = conv2d(images,
                         weights,
                         input_shape=(12, 3, 256, 256),
                         filter_shape=(12, 3, 3, 3),
                         filter_flip=False)
        fori = theano.function(inputs=[images, weights],
                               outputs=convOut,
                               mode=mode_without_mkl)
        old_out = fori(ival, wval)

        assert str(fopt.maker.fgraph.toposort()) != str(
            fori.maker.fgraph.toposort())
        assert numpy.allclose(old_out, new_out)
Exemplo n.º 6
0
    def test_bn_U2I(self):
        x = T.ftensor4('x')
        x_internal = U2IBatchNormalization(eps=1e-5)(x)
        x_out = I2U()(x_internal)

        fopt = theano.function([x], x_out, mode=with_mkl)
        ival = numpy.random.rand(64, 5, 128, 128).astype(numpy.float32)
        assert numpy.allclose(fopt(ival), ival)
Exemplo n.º 7
0
    def test_conv_U2I(self):
        images = T.dtensor4('inputs')
        a_internal = U2IConv(imshp=(12, 3, 256, 256),
                             kshp=(12, 3, 3, 3))(images)
        out = I2U()(a_internal)

        fopt = theano.function([images], out, mode=mode_with_mkl)
        ival = numpy.random.rand(12, 3, 256, 256).astype(numpy.float64)
        assert numpy.allclose(fopt(ival), ival)
Exemplo n.º 8
0
    def test_conv_with_bias(self):
        images = T.dtensor4('input_conv')
        weights = T.dtensor4('weights')
        bias = T.dvector('bias')

        ishape = [(8, 3, 256, 256), (16, 3, 256, 256), (32, 3, 256, 256),
                  (64, 3, 256, 256)]
        wshape = [(8, 3, 3, 3), (16, 3, 3, 3), (32, 3, 3, 3), (64, 3, 3, 3)]

        for i, ish in enumerate(ishape):
            wsh = wshape[i]

            images_internal = U2IConv(imshp=ish, kshp=wsh)(images)
            convOut = Conv2D(imshp=ish, kshp=wsh,
                             filter_flip=False)(images_internal, weights, bias)
            convOut_user = I2U()(convOut)
            convOutLoss = T.mean(convOut_user)
            conv_op_di = theano.grad(convOutLoss, images)
            conv_op_dk = theano.grad(convOutLoss, weights)
            conv_op_db = theano.grad(convOutLoss, bias)

            convOutBack = [conv_op_di, conv_op_dk, conv_op_db]

            ival = numpy.random.rand(*ish).astype(numpy.float64)
            wval = numpy.random.rand(*wsh).astype(numpy.float64)
            bval = numpy.random.rand(wsh[0]).astype(
                numpy.float64) - numpy.random.rand(wsh[0]).astype(
                    numpy.float64)

            fopt = theano.function(inputs=[images, weights, bias],
                                   outputs=convOutBack,
                                   mode=mode_with_mkl)
            new_out = fopt(ival, wval, bval)

            convOut = conv2d(images,
                             weights,
                             input_shape=ish,
                             filter_shape=wsh,
                             filter_flip=False)
            convOutLoss = T.mean(convOut + bias.dimshuffle('x', 0, 'x', 'x'))
            conv_op_di = theano.grad(convOutLoss, images)
            conv_op_dk = theano.grad(convOutLoss, weights)
            conv_op_db = theano.grad(convOutLoss, bias)

            convOutBack = [conv_op_di, conv_op_dk, conv_op_db]

            fori = theano.function(inputs=[images, weights, bias],
                                   outputs=convOutBack,
                                   mode=mode_without_mkl)
            old_out = fori(ival, wval, bval)
            assert len(fopt.maker.fgraph.toposort()) != len(
                fori.maker.fgraph.toposort())
            assert numpy.allclose(old_out[0], new_out[0])
            # assert numpy.allclose(old_out[1], new_out[1])
            assert numpy.allclose(old_out[2], new_out[2])
            assert new_out[0].dtype == 'float64'
            assert new_out[2].dtype == 'float64'
Exemplo n.º 9
0
    def mkl_concatenate_func(*inputs):
        # _, axis, tensors = inputs
        axis = inputs[1]
        tensors = inputs[2:]

        tensors_internal = [U2IConcatenate()(x) for x in tensors]
        new_inputs = [axis] + tensors_internal
        out = Concatenate()(*new_inputs)
        output = I2U()(out)
        return output
Exemplo n.º 10
0
    def mkl_relu_func(*inputs):
        if len(inputs) == 2:
            # self, image
            _, x, = inputs

            x_internal = U2IRelu()(x)
            reluOut = Relu()(x_internal)
            output = I2U()(reluOut)
        elif len(inputs) == 3:
            # self, image, slope
            _, x, slope, = inputs

            x_internal = U2IRelu(slope=slope)(x)
            reluOut = Relu(slope=slope)(x_internal)
            output = I2U()(reluOut)
        else:
            raise ValueError(
                "incorrect inputs list, should be 2 ~ 3 parameters!")

        return output
Exemplo n.º 11
0
    def test_lrn_float64(self):
        old_floatX = theano.config.floatX
        theano.config.floatX = 'float64'

        x = tensor.dtensor4('x')
        x_internal = U2ILRN()(x)
        z_internal = mkl_lrn.LRN()(x_internal)
        z = I2U()(z_internal)

        f = theano.function([x], z, mode=mode_with_mkl)
        imval = numpy.random.rand(4, 2, 4, 4).astype(theano.config.floatX)

        f(imval)
        assert f(imval).dtype == 'float64'

        theano.config.floatX = old_floatX
Exemplo n.º 12
0
    def test_bn_value(self):
        X = T.ftensor4('x')
        Scale = T.vector('scale')
        Shift = T.vector('shift')

        x_internal = U2IBatchNormalization(eps=1e-5)(X)
        z_bn = mkl_bn.BatchNormalization(eps=1e-5, bias=1, term=1)(x_internal, Scale, Shift)
        z_out = I2U()(z_bn)
        z_sum = T.sum(z_out)
        z_grad = T.grad(z_sum, [X])

        fgrad = theano.function([X, Scale, Shift], z_grad, mode=with_mkl)

        ival = numpy.random.rand(64, 5, 128, 128).astype(numpy.float32)
        sval = numpy.random.rand(5).astype(numpy.float32)
        tval = numpy.random.rand(5).astype(numpy.float32)
        fgrad(ival, sval, tval)
Exemplo n.º 13
0
    def test_lrn_grad_float32(self):
        old_floatX = theano.config.floatX
        theano.config.floatX = 'float32'

        x = tensor.ftensor4('x')
        x_internal = U2ILRN()(x)
        z_internal = mkl_lrn.LRN()(x_internal)
        z = I2U()(z_internal)
        z_sum = tensor.sum(z)
        g = tensor.grad(z_sum, [x])

        f = theano.function([x], g, mode=mode_with_mkl)
        imval = numpy.random.rand(4, 2, 4, 4).astype(theano.config.floatX)

        f(imval)
        assert f(imval)[0].dtype == 'float32'

        theano.config.floatX = old_floatX
Exemplo n.º 14
0
def local_pool_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, pool.Pool):
        return

    if node.inputs[0].type.ndim != 4:
        return

    mkl_ver = theano.sandbox.mkl.mkl_version()

    mkl_pool_modes = ['min', 'max', 'average_exc_pad']
    mkl_ignore_border = [False]
    if isinstance(mkl_ver, integer_types) and (mkl_ver >= 20170206):
        mkl_pool_modes.append('average_inc_pad')
        mkl_ignore_border.append(True)

    if node.op.mode not in mkl_pool_modes:
        return

    if node.op.ignore_border not in mkl_ignore_border:
        return

    x, ws, stride, pad = node.inputs
    if stride is None:
        stride = ws

    try:
        x_internal = U2IPool(ignore_border=node.op.ignore_border,
                             mode=node.op.mode)(x, ws, stride, pad)

        poolOut = mkl_pool.Pool(ignore_border=node.op.ignore_border,
                                mode=node.op.mode)(x_internal, ws, stride, pad)

        z_user = I2U()(poolOut)

        rval = z_user
        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 15
0
def local_ConvGroup_mkl(node):

    if not mkl_available():
        return

    if not isinstance(node.op, mkl_conv.AbstractConvGroup):
        return

    # image
    if node.inputs[0].type.ndim != 4:
        return

    # weight
    if node.inputs[1].type.ndim not in [4, 5]:
        return

    try:
        assert len(node.inputs) in [2, 3]
        if len(node.inputs) == 2:
            image, weight, = node.inputs
            bias = None
        else:
            image, weight, bias, = node.inputs
        image_internal = U2IConv(imshp=node.op.imshp,
                                 kshp=node.op.kshp,
                                 subsample=node.op.subsample,
                                 border_mode=node.op.border_mode,
                                 filter_dilation=node.op.filter_dilation)(image)
        conv_out = mkl_conv.Conv2D(imshp=node.op.imshp,
                                   kshp=node.op.kshp,
                                   subsample=node.op.subsample,
                                   border_mode=node.op.border_mode,
                                   filter_flip=node.op.filter_flip,
                                   filter_dilation=node.op.filter_dilation)(image_internal, weight, bias)
        conv_out = I2U()(conv_out)
        rval = conv_out
        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 16
0
def local_Conv2D_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, AbstractConv2d):
        return

    if node.op.filter_dilation != (1, 1):
        return

    if node.inputs[1].type.ndim != 4 and node.inputs[1].type.ndim != 5:
        return

    if None in node.op.kshp:
        return

    if None in node.op.imshp:
        return

    try:
        image, weight = node.inputs
        image_internal = U2IConv(imshp=node.op.imshp,
                                 kshp=node.op.kshp,
                                 subsample=node.op.subsample,
                                 border_mode=node.op.border_mode,
                                 filter_dilation=node.op.filter_dilation)(image)
        convOut = mkl_conv.Conv2D(imshp=node.op.imshp,
                                  kshp=node.op.kshp,
                                  border_mode=node.op.border_mode,
                                  subsample=node.op.subsample,
                                  filter_flip=node.op.filter_flip,
                                  filter_dilation=node.op.filter_dilation)(image_internal, weight)
        z_user = I2U()(convOut)
        reval = z_user
        return [reval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 17
0
    def test_mkl_lrn_value(self):
        shape = [(2, 15, 3, 4), (256, 256, 27, 27)]  # NCHW
        n = 5
        k = 2
        alpha = 0.0001
        beta = 0.75

        x = tensor.dtensor4('x')
        x_internal = U2ILRN()(x)
        z_internal = mkl_lrn.LRN(alpha, beta, k, n)(x_internal)
        z = I2U()(z_internal)

        fz = theano.function([x], z, mode=mode_with_mkl)
        # for shape[0]
        input_data = numpy.random.rand(*shape[0]).astype(theano.config.floatX)
        t = self.ground_truth_normalizer(input_data,
                                         k=k,
                                         n=n,
                                         alpha=alpha,
                                         beta=beta)
        assert (fz(input_data)).shape == t.shape
        assert numpy.allclose(fz(input_data), t)
Exemplo n.º 18
0
def local_concatenate_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, Join):
        return

    if node.inputs[1].type.ndim != 4:
        return

    try:
        axis, tensors = node.inputs[0], node.inputs[1:]
        tensors_internal = [U2IConcatenate()(x) for x in tensors]
        new_inputs = [axis] + tensors_internal
        concatenateOut = mkl_concatenate.Concatenate()(*new_inputs)
        z_user = I2U()(concatenateOut)
        rval = z_user

        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 19
0
def local_concatenate_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, Join):
        return

    if node.inputs[1].type.ndim != 4:
        return

    try:
        axis, tensors = node.inputs[0], node.inputs[1:]

        if not isinstance(axis, integer_types):
            try:
                axis = int(get_scalar_constant_value(axis))
            except NotScalarConstantError:
                return

        if isinstance(axis, integer_types):
            # MKL Concatenate only supports axis=1
            if axis != 1:
                return

        tensors_internal = [U2IConcatenate()(x) for x in tensors]
        new_inputs = [axis] + tensors_internal
        concatenateOut = mkl_concatenate.Concatenate()(*new_inputs)
        z_user = I2U()(concatenateOut)
        rval = z_user

        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 20
0
def local_relu_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, mkl_relu.AbstractRelu):
        return

    if node.inputs[0].type.ndim != 4:
        return

    x, = node.inputs

    try:
        x_internal = U2IRelu(slope=node.op.slope)(x)
        reluOut = mkl_relu.Relu(slope=node.op.slope)(x_internal)
        z_user = I2U()(reluOut)

        rval = z_user
        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 21
0
def local_bn_mkl(node):
    if not mkl_available():
        return

    if not isinstance(node.op, mkl_bn.AbstractBatchNormalization):
        return

    if node.inputs[0].type.ndim != 4:
        return

    try:
        x, scale, shift, = node.inputs[0:3]
        x_u2i = U2IBatchNormalization(eps=node.op.eps)(x)
        bn_out = mkl_bn.BatchNormalization(eps=node.op.eps,
                                           bias=node.op.bias,
                                           term=node.op.term)(x_u2i, scale, shift)
        z_i2u = I2U()(bn_out)
        rval = z_i2u
        return [rval]
    except Exception as e:
        msg = ('Failed to apply local opt to Op %s. '
               'Exception message: %s\n') % (node.op, str(e))
        _logger.warning(msg)
        return
Exemplo n.º 22
0
    def apply(self, fgraph):
        if not mkl_available():
            return

        did_something = True
        while did_something:
            did_something = False
            topo = fgraph.toposort()
            for node in topo:
                if (node in fgraph.apply_nodes) and isinstance(node.op, AbstractConv2d):
                    inp = node.inputs
                    out = node.outputs
                    imshp = getattr(node.op, 'imshp', None)
                    kshp = getattr(node.op, 'kshp', None)
                    border_mode = getattr(node.op, 'border_mode', 'valid')
                    subsample = getattr(node.op, 'subsample', (1, 1))
                    filter_flip = getattr(node.op, 'filter_flip', False)
                    filter_dilation = getattr(node.op, 'filter_dilation', (1, 1))

                    # Get Elemwise node
                    if (len(out) == 1 and (not out[0] in fgraph.outputs) and
                            isinstance(out[0].clients[0][0].op, tensor.Elemwise) and
                            isinstance(out[0].clients[0][0].op.scalar_op, scalar.Add)):
                        if len(out[0].clients[0][0].inputs) == 2:
                            if out[0].clients[0][0].inputs[0] is out[0]:
                                bias = out[0].clients[0][0].inputs[1]
                            else:
                                bias = out[0].clients[0][0].inputs[0]
                            # Get DimShuffle node
                            bias_owner = bias.owner
                            if (bias_owner is None):
                                try:
                                    inp_0 = U2IConv(imshp=imshp, kshp=kshp, border_mode=border_mode, subsample=subsample,
                                                    filter_dilation=filter_dilation)(inp[0])
                                    out_0 = mkl_conv.Conv2D(imshp=imshp,
                                                            kshp=kshp,
                                                            border_mode=border_mode,
                                                            subsample=subsample,
                                                            filter_flip=filter_flip,
                                                            filter_dilation=filter_dilation)(image=inp_0, weight=inp[1], bias=bias)
                                    fgraph.repalce_validate(out[0].clients[0][0].outputs[0],
                                                            out_0,
                                                            'ReplaceConvBias')
                                    did_something = True
                                except Exception as e:
                                    raise
                            elif isinstance(bias_owner.op, tensor.DimShuffle) and (bias_owner.inputs[0].owner is None):
                                try:
                                    inp_0 = U2IConv(imshp=imshp, kshp=kshp, border_mode=border_mode, subsample=subsample,
                                                    filter_dilation=filter_dilation)(inp[0])
                                    out_0 = mkl_conv.Conv2D(imshp=imshp,
                                                            kshp=kshp,
                                                            border_mode=border_mode,
                                                            subsample=subsample,
                                                            filter_flip=filter_flip,
                                                            filter_dilation=filter_dilation)(image=inp_0, weight=inp[1], bias=bias_owner.inputs[0])
                                    out_1 = I2U()(out_0)
                                    fgraph.replace_validate(out[0].clients[0][0].outputs[0],
                                                            out_1,
                                                            'ReplaceConvBias')
                                    did_something = True
                                except Exception as e:
                                    raise
                            else:
                                pass
                elif (node in fgraph.apply_nodes) and isinstance(node.op, AbstractConv2d_gradWeights):
                    inp = node.inputs  # 0-image, 1-gz, 2-shape
                    out = node.outputs
                    imshp = getattr(node.op, 'imshp', None)
                    kshp = getattr(node.op, 'kshp', None)
                    border_mode = getattr(node.op, 'border_mode', 'valid')
                    subsample = getattr(node.op, 'subsample', (1, 1))
                    filter_flip = getattr(node.op, 'filter_flip', False)
                    filter_dilation = getattr(node.op, 'filter_dilation', (1, 1))

                    assert len(inp) == 3 and len(out) == 1
                    for i, c in enumerate(inp[0].clients):
                        if hasattr(c[0], 'op') and isinstance(c[0].op, U2IConv) and self._check_attributes_(c[0], node):
                            for cc in c[0].outputs[0].clients:
                                if isinstance(cc[0].op, mkl_conv.Conv2D) and len(cc[0].inputs) == 3:
                                    weight, bias = cc[0].inputs[1:3]
                                    try:
                                        inp_0 = U2IConv(imshp=imshp, kshp=kshp, border_mode=border_mode, subsample=subsample,
                                                        filter_dilation=filter_dilation)(inp[0])
                                        conv_fw = mkl_conv.Conv2D(imshp=imshp,
                                                                  kshp=kshp,
                                                                  border_mode=border_mode,
                                                                  subsample=subsample,
                                                                  filter_flip=filter_flip,
                                                                  filter_dilation=filter_dilation)(inp_0, weight, bias)
                                        gz = I2UGrad()(conv_fw, inp[1])
                                        out_0, out_1 = mkl_conv.ConvGradWeights(imshp=imshp,
                                                                                kshp=kshp,
                                                                                border_mode=border_mode,
                                                                                subsample=subsample,
                                                                                filter_flip=filter_flip,
                                                                                filter_dilation=filter_dilation)(image=inp_0, weight=weight, gradz=gz, bias=bias)
                                        # Get BiasGrad
                                        oriBiasGrad = None  # BiasGrad in original function graph
                                        gz_node = inp[1].owner
                                        for i, o in enumerate(gz_node.outputs):
                                            if inp[1] is o and len(o.clients) >= 2:
                                                oriBiasGrad = self._check_grad_bias_(gz_node, i)

                                        fgraph.replace_validate(out[0], out_0, 'ReplaceConvBias')
                                        if oriBiasGrad:
                                            fgraph.replace_validate(oriBiasGrad, out_1, 'ReplaceConvBias')
                                        did_something = True
                                    except Exception as e:
                                        raise
                elif (node in fgraph.apply_nodes) and isinstance(node.op, AbstractConv2d_gradInputs):
                    inp = node.inputs  # 0-weight, 1-gz, 2-shape
                    out = node.outputs
                    imshp = getattr(node.op, 'imshp', None)
                    kshp = getattr(node.op, 'kshp', None)
                    border_mode = getattr(node.op, 'border_mode', 'valid')
                    subsample = getattr(node.op, 'subsample', (1, 1))
                    filter_flip = getattr(node.op, 'filter_flip', False)
                    filter_dilation = getattr(node.op, 'filter_dilation', (1, 1))

                    assert len(inp) == 3 and len(out) == 1
                    list_Conv2D = [c[0] for c in inp[0].clients if (hasattr(c[0], 'op') and
                                                                    isinstance(c[0].op, mkl_conv.Conv2D) and
                                                                    len(c[0].inputs) == 3 and
                                                                    self._check_attributes_(c[0], node))]
                    if 3 > len(list_Conv2D) > 0:
                        x = list_Conv2D[0].inputs[0].owner.inputs[0]
                        bias = list_Conv2D[0].inputs[2]
                        inp_0 = list_Conv2D[0].inputs[0]
                        try:
                            inp_0 = U2IConv(imshp=imshp, kshp=kshp, border_mode=border_mode, subsample=subsample,
                                            filter_dilation=filter_dilation)(x)
                            conv_fw = mkl_conv.Conv2D(imshp=imshp,
                                                      kshp=kshp,
                                                      border_mode=border_mode,
                                                      subsample=subsample,
                                                      filter_flip=filter_flip,
                                                      filter_dilation=filter_dilation)(inp_0, inp[0], bias)
                            gz = I2UGrad()(conv_fw, inp[1])
                            out_0 = mkl_conv.ConvGradInputs(imshp=imshp,
                                                            kshp=kshp,
                                                            border_mode=border_mode,
                                                            subsample=subsample,
                                                            filter_flip=filter_flip,
                                                            filter_dilation=filter_dilation)(inp_0, inp[0], gz)
                            inp_grad = U2IGrad()(x, out_0)
                            fgraph.replace_validate(out[0], inp_grad, 'ReplaceConvBias')
                            did_something = True
                        except Exception as e:
                            raise e
                else:
                    pass
Exemplo n.º 23
0
    def apply(self, fgraph):

        if not mkl_available():
            return

        def getElemwiseInput(node, inputs, coeffs, co):
            inp = inputs
            coe = coeffs

            # Elemwise_add
            if ((isinstance(node.op, tensor.Elemwise) and
                 isinstance(node.op.scalar_op, scalar.Add))):
                for i in node.inputs:
                    n = i.owner
                    if (n is not None and
                            isinstance(n.op, tensor.Elemwise) and
                            isinstance(n.op.scalar_op, scalar.Add)):
                        getElemwiseInput(n, inp, coe, co)
                    else:
                        inp.append(i)
                        coe.append(co)

            # Elemwise_mul: This case has been deleted.
            # We just process Elemwise{Add} here to avoid disturbing the Elemwise{Complesite} fusion.
            else:
                raise TypeError('The OP of the inputs node should be an instance of Elemwise{Add}')

        did_something = True
        while did_something:
            did_something = False
            topo = fgraph.toposort()
            topo.reverse()
            for node in topo:
                if node in fgraph.apply_nodes:
                    if (isinstance(node.op, tensor.Elemwise) and
                            isinstance(node.op.scalar_op, scalar.Add)):
                        out = node.outputs
                        inputs = []
                        coeffs = []
                        co = 1.0  # For now, all the coeffs are 1.0 since Elemwise{Mul} is not processed
                        getElemwiseInput(node, inputs, coeffs, co)
                        inp_len = len(inputs)
                        assert len(inputs) == len(coeffs)
                        if inp_len >= 2:
                            # print(inputs)
                            # print(coeffs)
                            # Check all inputs are from I2U and U2IGrad
                            if all([(i.owner and isinstance(i.owner.op, (I2U, U2IGrad))) for i in inputs]):
                                try:
                                    inputs_t = []
                                    for i in inputs:
                                        inputs_t.append(U2IElemwiseSum(inp_num=inp_len, coeff=coeffs)(i))
                                    out_t = mkl_elemwise.ElemwiseSum(inp_num=inp_len, coeff=coeffs)(*inputs_t)

                                    new_out = I2U()(out_t)
                                    fgraph.replace_validate(out[0], new_out, 'ReplaceElemwise')
                                    did_something = True
                                except Exception as e:
                                    raise e
                            else:
                                pass