Exemplo n.º 1
0
def batch_cca_loss(y_true, y_pred):
    """
    Return Sum of the diagonal - Sum of upper and lower triangles
    """
    trace = TN.trace(y_true[0, :, :])
    triu_sum = K.sum(K.abs(TB.triu(y_true[0, :, :], k=1)))
    tril_sum = K.sum(K.abs(TB.tril(y_true[0, :, :], k=-1)))
    return trace - tril_sum - triu_sum
Exemplo n.º 2
0
def self_similarity_cosine(x):
  """
  :param x: shape (T,D)
  :returns cosine similarity matrix, shape (T,T), zeroed at diagonal and upper triangle
  """
  assert x.ndim == 2
  x2 = T.sqrt(T.clip(T.sum(T.sqr(x), axis=1), numpy.float32(1.e-20), numpy.float32(1.e20)))
  assert x2.ndim == 1
  x_ = x / x2.dimshuffle(0, 'x')
  xx = T.dot(x_, x_.T)
  assert xx.ndim == 2
  from theano.tensor.basic import tril
  return tril(xx, 1)
Exemplo n.º 3
0
def self_similarity_cosine(x):
    """
  :param x: shape (T,D)
  :returns cosine similarity matrix, shape (T,T), zeroed at diagonal and upper triangle
  """
    assert x.ndim == 2
    x2 = T.sqrt(
        T.clip(T.sum(T.sqr(x), axis=1), numpy.float32(1.e-20),
               numpy.float32(1.e20)))
    assert x2.ndim == 1
    x_ = x / x2.dimshuffle(0, 'x')
    xx = T.dot(x_, x_.T)
    assert xx.ndim == 2
    from theano.tensor.basic import tril
    return tril(xx, 1)