Exemplo n.º 1
0
def test_VaporPressure_fitting11_bad_method():
    Ts = [
        203.65, 209.55, 212.45, 234.05, 237.04, 243.25, 249.35, 253.34, 257.25,
        262.12, 264.5, 267.05, 268.95, 269.74, 272.95, 273.46, 275.97, 276.61,
        277.23, 282.03, 283.06, 288.94, 291.49, 293.15, 293.15, 293.85, 294.25,
        294.45, 294.6, 294.63, 294.85, 297.05, 297.45, 298.15, 298.15, 298.15,
        298.15, 298.15, 299.86, 300.75, 301.35, 303.15, 303.15, 304.35, 304.85,
        305.45, 306.25, 308.15, 308.15, 308.15, 308.22, 308.35, 308.45, 308.85,
        309.05, 311.65, 311.85, 311.85, 311.95, 312.25, 314.68, 314.85, 317.75,
        317.85, 318.05, 318.15, 318.66, 320.35, 320.35, 320.45, 320.65, 322.55,
        322.65, 322.85, 322.95, 322.95, 323.35, 323.55, 324.65, 324.75, 324.85,
        324.85, 325.15, 327.05, 327.15, 327.2, 327.25, 327.35, 328.22, 328.75,
        328.85, 333.73, 338.95
    ]
    Psats = [
        58.93, 94.4, 118.52, 797.1, 996.5, 1581.2, 2365, 3480, 3893, 5182,
        6041, 6853, 7442, 7935, 9290, 9639, 10983, 11283, 13014, 14775, 15559,
        20364, 22883, 24478, 24598, 25131, 25665, 25931, 25998, 26079, 26264,
        29064, 29598, 30397, 30544, 30611, 30784, 30851, 32636, 33931, 34864,
        37637, 37824, 39330, 40130, 41063, 42396, 45996, 46090, 46356, 45462,
        46263, 46396, 47129, 47396, 52996, 52929, 53262, 53062, 53796, 58169,
        59328, 66395, 66461, 67461, 67661, 67424, 72927, 73127, 73061, 73927,
        79127, 79527, 80393, 79927, 80127, 81993, 80175, 85393, 85660, 85993,
        86260, 86660, 92726, 92992, 92992, 93126, 93326, 94366, 98325, 98592,
        113737, 136626
    ]
    with pytest.raises(ValueError):
        TDependentProperty.fit_data_to_model(Ts=Ts,
                                             data=Psats,
                                             model='NOTAMETHOD')
Exemplo n.º 2
0
def test_VaporPressure_fitting0():
    obj = VaporPressure(CASRN='13838-16-9')
    Tmin, Tmax = obj.WAGNER_POLING_Tmin, obj.WAGNER_POLING_Tmax
    Ts = linspace(Tmin, Tmax, 10)
    Ps = [obj(T) for T in Ts]
    Tc, Pc = obj.WAGNER_POLING_Tc, obj.WAGNER_POLING_Pc
    fitted = obj.fit_data_to_model(Ts=Ts,
                                   data=Ps,
                                   model='Wagner',
                                   use_numba=False,
                                   model_kwargs={
                                       'Tc': obj.WAGNER_POLING_Tc,
                                       'Pc': obj.WAGNER_POLING_Pc
                                   })
    res = fitted
    assert 'Tc' in res
    assert 'Pc' in res
    assert_close(res['a'], obj.WAGNER_POLING_coefs[0])
    assert_close(res['b'], obj.WAGNER_POLING_coefs[1])
    assert_close(res['c'], obj.WAGNER_POLING_coefs[2])
    assert_close(res['d'], obj.WAGNER_POLING_coefs[3])

    # Heavy compound fit
    Ts = linspace(179.15, 237.15, 5)
    props_calc = [Antoine(T, A=138., B=520200.0, C=3670.0) for T in Ts]
    res, stats = TDependentProperty.fit_data_to_model(
        Ts=Ts,
        data=props_calc,
        model='Antoine',
        do_statistics=True,
        use_numba=False,
        model_kwargs={'base': 10.0},
        fit_method='lm')
    assert stats['MAE'] < 1e-5

    # Fit with very low range and no C
    Ts = linspace(374, 377.0, 5)
    props_calc = [Antoine(T, A=12.852103, B=2942.98, C=0.0) for T in Ts]
    res, stats = TDependentProperty.fit_data_to_model(
        Ts=Ts,
        data=props_calc,
        model='Antoine',
        do_statistics=True,
        use_numba=False,
        model_kwargs={'base': 10.0},
        fit_method='lm')
    assert stats['MAE'] < 1e-5
Exemplo n.º 3
0
def test_many_local_methods():
    obj = TDependentProperty(extrapolation='linear')
    M1_value = 2.0
    M2_value = 3.0
    obj.add_method(M1_value, name='M1')
    obj.add_method(M2_value, name='M2')
    obj.method = 'M1'
    assert_close(M1_value, obj.T_dependent_property(300.))
    obj.method = 'M2'
    assert_close(M2_value, obj.T_dependent_property(300.))
Exemplo n.º 4
0
def test_derivative():
    obj = TDependentProperty(extrapolation='linear')
    Tmin = 300
    Tmax = 400
    f = lambda T: T*T*T
    f_der = lambda T: 3*T*T
    f_der2 = lambda T: 6*T
    f_der3 = lambda T: 6
    obj.add_method(f=f, f_der=f_der, f_der2=f_der2, f_der3=f_der3, Tmin=Tmin, Tmax=Tmax)
    
    
    T_in_range = (Tmin + Tmax) * 0.5
    for order, fun in zip([1,2,3], [f_der, f_der2, f_der3]):
        # Within valid T range
        assert_close(obj.T_dependent_property_derivative(T_in_range, order=order), fun(T_in_range))
    
    # Extrapolate left
    T = Tmin - 50
    obj.RAISE_PROPERTY_CALCULATION_ERROR = True
    assert_close(obj.T_dependent_property_derivative(T, order=1), f_der(Tmin))
    
    # Extrapolate right
    T = Tmax + 50
    assert_close(obj.T_dependent_property_derivative(T, order=1), f_der(Tmax))
Exemplo n.º 5
0
def test_integrals():
    obj = TDependentProperty(extrapolation='constant')
    Tmin = 300
    Tmax = 400
    f = lambda T: T + 10.
    f_int = lambda T1, T2: (T2*T2 - T1*T1) * 0.5 + 10 * (T2 - T1)
    f_int_over_T = lambda T1, T2: T2 - T1 + 10 * log(T2/T1)
    obj.add_method(f=f, f_int=f_int, f_int_over_T=f_int_over_T, Tmin=Tmin, Tmax=Tmax)
    
    # Within valid T range
    T1 = 300.
    T2 = 310.
    dT = T2 - T1
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate left
    T1 = Tmin - 50
    T2 = Tmin - 25
    dT = T2 - T1
    constant_low = f(Tmin)
    assert_close(obj.T_dependent_property_integral(T1, T2), constant_low * dT)
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), constant_low * log(T2/T1))
    
    # Extrapolate right
    T1 = Tmax + 25
    T2 = Tmax + 50
    dT = T2 - T1
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), constant_high * dT)
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), constant_high * log(T2/T1))
    
    # Extrapolate left to center (piece-wise)
    T1 = Tmin - 50
    T2 = Tmin + 25
    constant_low = f(Tmin)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(Tmin, T2) + constant_low * (Tmin - T1))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(Tmin, T2) + constant_low * log(Tmin/T1))
    
    # Extrapolate right to center (piece-wise)
    T1 = Tmax - 25
    T2 = Tmax + 50
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, Tmax) + constant_high * (T2 - Tmax))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, Tmax) + constant_high * log(T2/Tmax))
    
    # Extrapolate across both sides (piece-wise)
    T1 = Tmin - 50
    T2 = Tmax + 50
    constant_low = f(Tmin)
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), constant_low * (Tmin - T1) + f_int(Tmin, Tmax) + constant_high * (T2 - Tmax))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), constant_low * log(Tmin/T1) + f_int_over_T(Tmin, Tmax) + constant_high * log(T2/Tmax))
    
    ### Test linear extrapolation
    obj.extrapolation = 'linear'
    
    # Extrapolate left
    T1 = Tmin - 50
    T2 = Tmin - 25
    dT = T2 - T1
    constant_low = f(Tmin)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate right
    T1 = Tmax + 25
    T2 = Tmax + 50
    dT = T2 - T1
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate left to center (piece-wise)
    T1 = Tmin - 50
    T2 = Tmin + 25
    constant_low = f(Tmin)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate right to center (piece-wise)
    T1 = Tmax - 25
    T2 = Tmax + 50
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate across both sides (piece-wise)
    T1 = Tmin - 50
    T2 = Tmax + 50
    constant_low = f(Tmin)
    constant_high = f(Tmax)
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
Exemplo n.º 6
0
def test_extrapolation():
    obj = TDependentProperty(extrapolation='constant')
    Tmin = 300
    Tmax = 400
    f = lambda T: T
    f_int = lambda T1, T2: (T2*T2 - T1*T1) / 2.
    f_int_over_T = lambda T1, T2: T2 - T1
    obj.add_method(f=f, Tmin=Tmin, Tmax=Tmax)
    
    with pytest.raises(ValueError):
        obj.extrapolate(350, obj.method, in_range='error')
    
    T_low = Tmin - 100
    T_inrange = (Tmin + Tmax) * 0.5
    T_high = Tmax + 100
    assert_close(Tmin, obj.extrapolate(T_low, obj.method, in_range='error'))
    assert_close(Tmax, obj.extrapolate(T_high, obj.method, in_range='error'))
    assert_close(Tmin, obj.extrapolate(T_low, obj.method, in_range='low'))
    assert_close(Tmin, obj.extrapolate(T_inrange, obj.method, in_range='low'))
    assert_close(Tmax, obj.extrapolate(T_high, obj.method, in_range='low'))
    assert_close(Tmin, obj.extrapolate(T_low, obj.method, in_range='high'))
    assert_close(Tmax, obj.extrapolate(T_inrange, obj.method, in_range='high'))
    assert_close(Tmax, obj.extrapolate(T_high, obj.method, in_range='high'))
Exemplo n.º 7
0
def test_local_constant_method():
    # Test user defined method
    
    # Within valid T range
    obj = TDependentProperty(extrapolation='linear')
    constant = 100.
    T1 = T = 300.
    T2 = 310.
    dT = T2 - T1
    obj.add_method(constant)
    assert_close(obj.T_dependent_property(T), constant)
    for order in (1, 2, 3):
        assert_close(obj.T_dependent_property_derivative(T, order), 0.)
    assert_close(obj.T_dependent_property_integral(T1, T2), constant * dT)
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), constant * log(T2 / T1))
    
    # Extrapolate
    Tmin = 350.
    Tmax = 400.
    obj.add_method(constant, Tmin, Tmax)
    obj.extrapolation = 'constant'
    assert_close(obj.T_dependent_property(T), constant)
    for order in (1, 2, 3):
        assert_close(obj.T_dependent_property_derivative(T, order), 0., atol=1e-6)
    assert_close(obj.T_dependent_property_integral(T1, T2), constant * dT)
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), constant * log(T2 / T1))
    
    # Test extrapolation on both sides
    assert_close(obj.T_dependent_property_integral(Tmin - 50, Tmax + 50), constant * (100 + Tmax - Tmin))
    assert_close(obj.T_dependent_property_integral_over_T(Tmin - 50, Tmax + 50), constant * log((Tmax + 50) / (Tmin - 50)))
    
    # Do not allow extrapolation
    obj.extrapolation = None
    obj.add_method(constant, Tmin, Tmax)
    assert obj.T_dependent_property(T) is None
Exemplo n.º 8
0
def test_local_method():
    # Test user defined method
    
    # Within valid T range
    obj = TDependentProperty(extrapolation='linear')
    T = 300.
    Tmin = 200.
    Tmax = 400.
    T1 = 300.
    T2 = 310.
    dT = T2 - T1
    f = lambda T: T*T / 1e6
    f_der = lambda T: T / 1e6
    f_der2 = lambda T: 1. / 1e6
    f_der3 = lambda T: 0. / 1e6
    f_int = lambda T1, T2: (T2*T2*T2 - T1*T1*T1) / 3. / 1e6
    f_int_over_T = lambda T1, T2: (T2*T2 - T1*T1) / 2. / 1e6
    obj.add_method(f, Tmin, Tmax, f_der, f_der2, f_der3, f_int, f_int_over_T)
    assert_close(obj.T_dependent_property(T), f(T))
    assert_close(obj.T_dependent_property_derivative(T, 1), f_der(T))
    assert_close(obj.T_dependent_property_derivative(T, 2), f_der2(T))
    assert_close(obj.T_dependent_property_derivative(T, 3), f_der3(T))
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Extrapolate
    Tmin = 300. + 1e-3
    obj.add_method(f, Tmin, Tmax)
    # obj.RAISE_PROPERTY_CALCULATION_ERROR = True
    # obj.CASRN = 'CASRN'
    assert_close(obj.T_dependent_property(T), f(T))
    for order in (1, 2, 3):
        assert obj.T_dependent_property_derivative(T, order) is not None
    assert_close(obj.T_dependent_property_integral(T1, T2), f_int(T1, T2))
    assert_close(obj.T_dependent_property_integral_over_T(T1, T2), f_int_over_T(T1, T2))
    
    # Do not allow extrapolation
    obj.extrapolation = None
    obj.add_method(f, Tmin, Tmax)
    assert obj.T_dependent_property(T) is None
    assert obj.T_dependent_property_integral(T1, T2) is None
    assert obj.T_dependent_property_integral_over_T(T1, T2) is None