Exemplo n.º 1
0
def test_approx_negative_error():
    """Check exception raised if matrix is negative"""
    A = np.ones([6, 6])
    A[0, 0] = -1
    with pytest.raises(ValueError,
                       match="Input matrix must not have negative entries"):
        hafnian(A, approx=True)
Exemplo n.º 2
0
    def test_complex_wrapper(self):
        """Check hafnian(A)=haf_complex(A) for a random
        real matrix.
        """
        A = np.complex128(np.random.random([6, 6]))
        A += 1j * np.random.random([6, 6])
        A += A.T
        haf = hafnian(A)
        expected = haf_complex(A)
        assert np.allclose(haf, expected)

        haf = hafnian(A, loop=True)
        expected = haf_complex(A, loop=True)
        assert np.allclose(haf, expected)
Exemplo n.º 3
0
 def test_valid_output(self, random_matrix, n, fill):
     """Tests that sparse loop hafnian matches full implementation"""
     A = random_matrix(n, fill_factor=fill)
     assert np.allclose(
         hafnian_sparse(A, loop=True),
         hafnian_sparse(A, D=set(range(len(A))), loop=True),
     )
     assert np.allclose(
         hafnian_sparse(A, loop=False),
         hafnian_sparse(A, D=set(range(len(A))), loop=False),
     )
     assert np.allclose(hafnian(A, loop=True), hafnian_sparse(A, loop=True))
     assert np.allclose(hafnian(A, loop=False), hafnian_sparse(A,
                                                               loop=False))
Exemplo n.º 4
0
def FockDensityMatrix(cov, mu, m, n, tol=1e-10):
    if np.max(cov - cov.T) > tol:
        raise ValueError("Covariance matrix must be symmetric.")
    else:
        cov = (cov + cov.T) / 2

    N = np.int(cov.shape[0] / 2)
    cov_Q = RtoQmat(cov)
    cov_Q_inv = np.linalg.inv(cov_Q)
    cov_Q_det = np.linalg.det(cov_Q)
    mu_Q = RtoTvec(mu)

    T1 = np.exp(-0.5 * np.dot(np.dot(np.conj(mu_Q), cov_Q_inv), mu_Q))
    T2 = np.sqrt(cov_Q_det * np.prod(special.factorial(m)) *
                 np.prod(special.factorial(n)))
    T = T1 / T2

    X = np.block([[np.zeros([N, N]), np.eye(N)], [np.eye(N),
                                                  np.zeros([N, N])]])
    A = np.dot(X, (np.eye(2 * N) - cov_Q_inv))
    A = (A + A.T) / 2  # cancel the numeric error of symmetray
    A_rp = np.repeat(A, np.hstack([n, m]), axis=0)
    A_rp = np.repeat(A_rp, np.hstack([n, m]), axis=1)
    gamma = np.dot(np.conj(mu_Q), cov_Q_inv)
    gamma_rp = np.repeat(gamma, np.hstack([n, m]))
    np.fill_diagonal(A_rp, gamma_rp)
    prob = T * hafnian(A_rp, loop=True)
    return prob
Exemplo n.º 5
0
 def test_4x4_zero_diag(self, random_matrix):
     """Check 4x4 loop hafnian with zero diagonals"""
     A = random_matrix(4)
     A = A - np.diag(np.diag(A))
     haf = hafnian(A, loop=True)
     expected = A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2]
     assert np.allclose(haf, expected)
Exemplo n.º 6
0
 def test_diag(self, n):
     """Check loophafnian of diagonal matrix is product of diagonals"""
     v = np.random.rand(n)
     A = np.diag(v)
     haf = hafnian(A, loop=True)
     expected = np.prod(v)
     assert np.allclose(haf, expected)
Exemplo n.º 7
0
def test_rank_r(r, n):
    """Test rank-r matrices"""
    G = np.random.rand(n, r) + 1j * np.random.rand(n, r)
    A = G @ G.T
    haf = low_rank_hafnian(G)
    expected = hafnian(A)
    assert np.allclose(haf, expected)
Exemplo n.º 8
0
 def test_int_wrapper_loop(self):
     """Check hafnian(A, loop=True)=haf_real(A, loop=True) for a random
     integer matrix.
     """
     A = np.int64(np.ones([6, 6]))
     haf = hafnian(A, loop=True)
     expected = haf_real(np.float64(A), loop=True)
     assert np.allclose(haf, expected)
Exemplo n.º 9
0
def test_rank_one(n):
    """Test the hafnian of rank one matrices so that it is within
    10% of the exact value"""
    x = np.random.rand(n)
    A = np.outer(x, x)
    exact = factorial2(n - 1) * np.prod(x)
    approx = hafnian(A, approx=True, num_samples=10000)
    assert np.allclose(approx, exact, rtol=2e-1, atol=0)
Exemplo n.º 10
0
 def test_int_wrapper(self):
     """Check hafnian(A)=haf_int(A) for a random
     integer matrix.
     """
     A = np.int64(np.ones([6, 6]))
     haf = hafnian(A)
     expected = haf_int(np.int64(A))
     assert np.allclose(haf, expected)
Exemplo n.º 11
0
 def test_block_ones(self, n, dtype, recursive):
     """Check hafnian([[0, I_n], [I_n, 0]])=n!"""
     O = np.zeros([n, n])
     B = np.ones([n, n])
     A = np.vstack([np.hstack([O, B]), np.hstack([B, O])])
     A = dtype(A)
     haf = hafnian(A, recursive=recursive)
     expected = float(fac(n))
     assert np.allclose(haf, expected)
Exemplo n.º 12
0
 def test_4x4(self, random_matrix):
     """Check 4x4 loop hafnian"""
     A = random_matrix(4)
     haf = hafnian(A, loop=True)
     expected = (A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2] +
                 A[0, 0] * A[1, 1] * A[2, 3] + A[0, 1] * A[2, 2] * A[3, 3] +
                 A[0, 2] * A[1, 1] * A[3, 3] + A[0, 0] * A[2, 2] * A[1, 3] +
                 A[0, 0] * A[3, 3] * A[1, 2] + A[0, 3] * A[1, 1] * A[2, 2] +
                 A[0, 0] * A[1, 1] * A[2, 2] * A[3, 3])
     assert np.allclose(haf, expected)
Exemplo n.º 13
0
    def test_real_wrapper(self):
        """Check hafnian(A)=haf_real(A) for a random
        real matrix.
        """
        A = np.random.random([6, 6])
        A += A.T
        haf = hafnian(A)
        expected = haf_real(A)
        assert np.allclose(haf, expected)

        haf = hafnian(A, loop=True)
        expected = haf_real(A, loop=True)
        assert np.allclose(haf, expected)

        A = np.random.random([6, 6])
        A += A.T
        A = np.array(A, dtype=np.complex128)
        haf = hafnian(A)
        expected = haf_real(np.float64(A.real))
        assert np.allclose(haf, expected)
Exemplo n.º 14
0
    def test_slow_hafnian_four(self):
        """
        Tests slow hafnian function against four-by-four graphs
        """
        for i in range(1):  # how many tests to perform
            graph = gnp_random_graph(10, 0.5)

            nx.draw(graph)
            plt.show()  # displays graph (cumbersome for large tests)

            adj = to_numpy_array(graph)  # create adjacency matrix
            walrus = thewalrus.hafnian(adj)  # calculate hafnian with Xanadu library
            haf = hafnian.slow_hafnian(adj)  # calculate my hafnian
            self.assertEqual(walrus, haf)  # compare!
Exemplo n.º 15
0
 def test_4x4(self, random_matrix, recursive):
     """Check 4x4 hafnian"""
     A = random_matrix(4)
     haf = hafnian(A, recursive=recursive)
     expected = A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2]
     assert np.allclose(haf, expected)
Exemplo n.º 16
0
 def test_nan(self):
     """Check exception for non-finite matrix"""
     A = np.array([[2, 1], [1, np.nan]])
     with pytest.raises(ValueError):
         hafnian(A)
Exemplo n.º 17
0
 def test_empty_matrix(self):
     """Check empty matrix returns 1"""
     A = np.ndarray((0, 0))
     res = hafnian(A)
     assert res == 1
Exemplo n.º 18
0
 def test_odd_dim(self):
     """Check hafnian for matrix with odd dimensions"""
     A = np.ones([3, 3])
     assert hafnian(A) == 0
Exemplo n.º 19
0
 def test_non_symmetric_exception(self):
     """Check exception for non-symmetric matrix"""
     A = np.ones([4, 4])
     A[0, 1] = 0.0
     with pytest.raises(ValueError):
         hafnian(A)
Exemplo n.º 20
0
 def test_array_exception(self):
     """Check exception for non-matrix argument"""
     with pytest.raises(TypeError):
         hafnian(1)
Exemplo n.º 21
0
 def test_square_exception(self):
     """Check exception for non-square argument"""
     A = np.zeros([2, 3])
     with pytest.raises(ValueError):
         hafnian(A)
Exemplo n.º 22
0
 def test_3x3(self, dtype, recursive):
     """Check 3x3 hafnian"""
     A = dtype(np.ones([3, 3]))
     haf = hafnian(A, recursive=recursive)
     assert haf == 0.0
Exemplo n.º 23
0
 def test_identity(self, n, dtype, recursive):
     """Check hafnian(I)=0"""
     A = dtype(np.identity(n))
     haf = hafnian(A, recursive=recursive)
     assert np.allclose(haf, 0)
Exemplo n.º 24
0
 def test_ones(self, n, dtype, recursive):
     """Check hafnian(J_2n)=(2n)!/(n!2^n)"""
     A = dtype(np.ones([2 * n, 2 * n]))
     haf = hafnian(A, recursive=recursive)
     expected = fac(2 * n) / (fac(n) * (2**n))
     assert np.allclose(haf, expected)
Exemplo n.º 25
0
 def test_2x2(self, random_matrix):
     """Check 2x2 loop hafnian"""
     A = random_matrix(2)
     haf = hafnian(A, loop=True)
     assert np.allclose(haf, A[0, 1] + A[0, 0] * A[1, 1])
Exemplo n.º 26
0
 def test_3x3(self, dtype):
     """Check 3x3 loop hafnian"""
     A = dtype(np.ones([3, 3]))
     haf = hafnian(A, loop=True)
     assert haf == 4.0
Exemplo n.º 27
0
def test_approx_complex_error():
    """Check exception raised if matrix is complex"""
    A = 1j * np.ones([6, 6])
    with pytest.raises(ValueError, match="Input matrix must be real"):
        hafnian(A, approx=True)
Exemplo n.º 28
0
 def test_identity(self, n, dtype):
     """Check loop hafnian(I)=1"""
     A = dtype(np.identity(n))
     haf = hafnian(A, loop=True)
     assert np.allclose(haf, 1)
Exemplo n.º 29
0
def test_ones_approx(n):
    """Check hafnian_approx(J_2n)=(2n)!/(n!2^n)"""
    A = np.float64(np.ones([2 * n, 2 * n]))
    haf = hafnian(A, approx=True, num_samples=10000)
    expected = fac(2 * n) / (fac(n) * (2**n))
    assert np.abs(haf - expected) / expected < 0.2
Exemplo n.º 30
0
 def test_ones(self, n, dtype):
     """Check loop hafnian(J_n)=T(n)"""
     A = dtype(np.ones([n, n]))
     haf = hafnian(A, loop=True)
     expected = T[n]
     assert np.allclose(haf, expected)