def __init__(self, storage, vecs, drop_factor=0.0, column=0): Model.__init__(self) self.storage = storage self.vecs = vecs self.nV = 300 self.drop_factor = drop_factor self.column = column
def build_model(nr_class, width, **kwargs): with Model.define_operators({'|': concatenate, '>>': chain, '**': clone}): model = (FeatureExtracter([ORTH]) >> flatten_add_lengths >> with_getitem(0, uniqued(HashEmbed(width, 10000, column=0))) >> Pooling(mean_pool) >> Softmax(nr_class)) model.lsuv = False return model
def Model(cls, nr_class, **cfg): depth = util.env_opt('parser_hidden_depth', cfg.get('hidden_depth', 1)) subword_features = util.env_opt('subword_features', cfg.get('subword_features', True)) conv_depth = util.env_opt('conv_depth', cfg.get('conv_depth', 4)) conv_window = util.env_opt('conv_window', cfg.get('conv_depth', 1)) t2v_pieces = util.env_opt('cnn_maxout_pieces', cfg.get('cnn_maxout_pieces', 3)) bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0)) self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0)) assert depth == 1 parser_maxout_pieces = util.env_opt('parser_maxout_pieces', cfg.get('maxout_pieces', 2)) token_vector_width = util.env_opt('token_vector_width', cfg.get('token_vector_width', 96)) hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64)) embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000)) tok2vec = get_t2v(token_vector_width, embed_size, conv_depth=conv_depth, conv_window=conv_window, cnn_maxout_pieces=t2v_pieces, subword_features=subword_features, bilstm_depth=bilstm_depth) tok2vec = chain(tok2vec, flatten) tok2vec.nO = token_vector_width lower = PrecomputableAffine(hidden_width, nF=cls.nr_feature, nI=token_vector_width, nP=parser_maxout_pieces) lower.nP = parser_maxout_pieces with Model.use_device('cpu'): upper = Affine(nr_class, hidden_width, drop_factor=0.0) upper.W *= 0 cfg = { 'nr_class': nr_class, 'hidden_depth': depth, 'token_vector_width': token_vector_width, 'hidden_width': hidden_width, 'maxout_pieces': parser_maxout_pieces, 'pretrained_vectors': None, 'bilstm_depth': bilstm_depth, 'self_attn_depth': self_attn_depth, 'conv_depth': conv_depth, 'conv_window': conv_window, 'embed_size': embed_size, 'cnn_maxout_pieces': t2v_pieces } return ParserModel(tok2vec, lower, upper), cfg
def my_tok_to_vec(width, embed_size, pretrained_vectors, **kwargs): # Circular imports :( from spacy._ml import PyTorchBiLSTM cnn_maxout_pieces = kwargs.get("cnn_maxout_pieces", 3) conv_depth = kwargs.get("conv_depth", 4) bilstm_depth = kwargs.get("bilstm_depth", 0) cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH] storage = [] with Model.define_operators({">>": chain, "|": concatenate, "**": clone}): # norm = HashEmbed(width, embed_size, column=cols.index(NORM), name="embed_norm") # prefix = HashEmbed( # width, embed_size // 2, column=cols.index(PREFIX), name="embed_prefix" # ) # suffix = HashEmbed( # width, embed_size // 2, column=cols.index(SUFFIX), name="embed_suffix" # ) shape = HashEmbed( width, embed_size // 2, column=cols.index(SHAPE), name="embed_shape" ) glove = Vectors(storage, pretrained_vectors, width, column=cols.index(NORM), ) vec_width = glove.nV embed = uniqued( (glove | shape) >> LN(Maxout(width, width + vec_width, pieces=3)), column=cols.index(ORTH), ) convolution = Residual( ExtractWindow(nW=1) >> LN(Maxout(width, width * 3, pieces=cnn_maxout_pieces)) ) tok2vec = SaveDoc(storage) >> FeatureExtracter(cols) >> with_flatten( embed >> convolution ** conv_depth, pad=conv_depth ) if bilstm_depth >= 1: tok2vec = tok2vec >> PyTorchBiLSTM(width, width, bilstm_depth) # Work around thinc API limitations :(. TODO: Revise in Thinc 7 tok2vec.nO = width tok2vec.embed = embed return tok2vec
def build_model(n_tags, n_words, word_width, tag_width, hidden_width): with Model.define_operators({'|': concatenate, '>>': chain}): words_model = ( with_flatten( Embed(word_width, word_width, n_words), pad=0 ) >> BiLSTM(word_width, word_width) >> flatten_add_lengths >> getitem(0) >> Affine(hidden_width, word_width * 2) >> pad_and_reshape ) tags_model = ( Embed(tag_width, tag_width, n_tags) >> Affine(hidden_width, tag_width) ) state_model = Affine(hidden_width, hidden_width) output_model = Softmax(n_tags, hidden_width) words_model.nO = hidden_width state_model.nO = hidden_width output_model.nO = n_tags def fwd_step(features, drop=0.): word_feats, prev_tags, prev_state = features tag_feats, bp_tags = tags_model.begin_update(prev_tags, drop=drop) state_feats, bp_state = state_model.begin_update(prev_state, drop=drop) preact = word_feats + tag_feats + state_feats nonlin = preact > 0 state = preact * nonlin scores, bp_scores = output_model.begin_update(state, drop=drop) def bwd_step(d_scores, d_next_state, sgd=None): d_state = d_next_state + bp_scores(d_scores, sgd=sgd) d_state *= nonlin bp_tags(d_state, sgd=sgd) d_prev_state = bp_state(d_state, sgd=sgd) return d_state, d_prev_state (state, scores), bwd_step return words_model, fwd_step
def build_model(nr_class, width, depth, conv_depth, **kwargs): with Model.define_operators({'|': concatenate, '>>': chain, '**': clone}): embed = ((HashEmbed(width, 5000, column=1) | HashEmbed(width // 2, 750, column=2) | HashEmbed(width // 2, 750, column=3) | HashEmbed(width // 2, 750, column=4)) >> Maxout(width)) sent2vec = ( FeatureExtracter([ORTH, LOWER, PREFIX, SUFFIX, SHAPE]) >> flatten_add_lengths >> with_getitem( 0, uniqued(embed, column=0) >> Residual(ExtractWindow(nW=1) >> SELU(width))**conv_depth) >> ParametricAttention(width) >> Pooling(sum_pool) >> Residual( SELU(width))**depth) model = ( foreach_sentence(sent2vec, drop_factor=2.0) >> flatten_add_lengths >> ParametricAttention(width, hard=False) >> Pooling(sum_pool) >> Residual(SELU(width))**depth >> Softmax(nr_class)) model.lsuv = False return model
def main(dataset='quora', width=128, depth=2, min_batch_size=128, max_batch_size=128, dropout=0.2, dropout_decay=0.0, pooling="mean+max", nb_epoch=20, pieces=3, use_gpu=False, out_loc=None, quiet=False): cfg = dict(locals()) if out_loc: out_loc = Path(out_loc) if not out_loc.parent.exists(): raise IOError("Can't open output location: %s" % out_loc) print(cfg) if pooling == 'mean+max': pool_layer = Pooling(mean_pool, max_pool) elif pooling == "mean": pool_layer = mean_pool elif pooling == "max": pool_layer = max_pool else: raise ValueError("Unrecognised pooling", pooling) print("Load spaCy") nlp = get_spacy('en') if use_gpu: Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) with Model.define_operators({ '>>': chain, '**': clone, '|': concatenate, '*': multiply }): # Important trick: text isn't like images, and the best way to use # convolution is different. Don't use pooling-over-time. Instead, # use the window to compute one vector per word, and do this N deep. # In the first layer, we adjust each word vector based on the two # surrounding words --- this gives us essentially trigram vectors. # In the next layer, we have a trigram of trigrams --- so we're # conditioning on information from a five word slice. The third layer # gives us 7 words. This is like the BiLSTM insight: we're not trying # to learn a vector for the whole sentence in this step. We're just # trying to learn better, position-sensitive word features. This simple # convolution step is much more efficient than BiLSTM, and can be # computed in parallel for every token in the batch. mwe_encode = ExtractWindow(nW=1) >> Maxout( width, width * 3, pieces=pieces) # Comments indicate the output type and shape at each step of the pipeline. # * B: Number of sentences in the batch # * T: Total number of words in the batch # (i.e. sum(len(sent) for sent in batch)) # * W: Width of the network (input hyper-parameter) # * ids: ID for each word (integers). # * lengths: Number of words in each sentence in the batch (integers) # * floats: Standard dense vector. # (Dimensions annotated in curly braces.) sent2vec = ( # List[spacy.token.Doc]{B} get_word_ids >> flatten_add_lengths # : (ids{T}, lengths{B}) >> with_getitem( 0, # : word_ids{T} (TokenWeights(Model.ops, nlp) * SpacyVectors('en', width) >> mwe_encode**depth)) # : (floats{T, W}, lengths{B}) # Useful trick: Why choose between max pool and mean pool? # We may as well have both representations. >> pool_layer # : floats{B, 2*W} ) model = ( diff(sent2vec) # : floats{B, 8*W} >> Maxout(width, pieces=pieces) # : floats{B, W} >> Softmax() # : floats{B, 2} ) print("Read and parse data: %s" % dataset) if dataset == 'quora': train, dev = datasets.quora_questions() elif dataset == 'snli': train, dev = datasets.snli() else: raise ValueError("Unknown dataset: %s" % dataset) train_X, train_y = preprocess(model.ops, nlp, train) dev_X, dev_y = preprocess(model.ops, nlp, dev) assert len(dev_y.shape) == 2 print("Initialize with data (LSUV)") with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (trainer, optimizer): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = min_batch_size batch_size = float(min_batch_size) print("Accuracy before training", model.evaluate(dev_X, dev_y)) print("Train") global epoch_train_acc for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) # No auto-diff: Just get a callback and pass the data through. # Hardly a hardship, and it means we don't have to create/maintain # a computational graph. We just use closures. backprop(yh - y, optimizer) epoch_train_acc += (yh.argmax(axis=1) == y.argmax(axis=1)).sum() # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001 if out_loc: out_loc = Path(out_loc) print('Saving to', out_loc) with out_loc.open('wb') as file_: pickle.dump(model, file_, -1)
def main( dataset="quora", width=64, depth=2, min_batch_size=1, max_batch_size=128, dropout=0.0, dropout_decay=0.0, pooling="mean+max", nb_epoch=20, pieces=3, use_gpu=False, out_loc=None, quiet=False, ): cfg = dict(locals()) if out_loc: out_loc = Path(out_loc) if not out_loc.parent.exists(): raise IOError("Can't open output location: %s" % out_loc) print(cfg) if pooling == "mean+max": pool_layer = Pooling(mean_pool, max_pool) elif pooling == "mean": pool_layer = mean_pool elif pooling == "max": pool_layer = max_pool else: raise ValueError("Unrecognised pooling", pooling) print("Load spaCy") nlp = get_spacy("en") # if use_gpu: # Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) with Model.define_operators({">>": chain, "**": clone, "|": concatenate, "+": add}): mwe_encode = ExtractWindow(nW=1) >> Maxout(width, width * 3, pieces=pieces) embed = StaticVectors("en", width) # + Embed(width, width*2, 5000) # Comments indicate the output type and shape at each step of the pipeline. # * B: Number of sentences in the batch # * T: Total number of words in the batch # (i.e. sum(len(sent) for sent in batch)) # * W: Width of the network (input hyper-parameter) # * ids: ID for each word (integers). # * lengths: Number of words in each sentence in the batch (integers) # * floats: Standard dense vector. # (Dimensions annotated in curly braces.) sent2vec = ( # List[spacy.token.Doc]{B} flatten_add_lengths # : (ids{T}, lengths{B}) >> with_getitem( 0, embed >> mwe_encode ** depth # : word_ids{T} ) # : (floats{T, W}, lengths{B}) >> pool_layer >> Maxout(width, pieces=pieces) >> Maxout(width, pieces=pieces) ) model = ( ((Arg(0) >> sent2vec) | (Arg(1) >> sent2vec)) >> Maxout(width, pieces=pieces) >> Maxout(width, pieces=pieces) >> Softmax(2) ) print("Read and parse data: %s" % dataset) if dataset == "quora": train, dev = datasets.quora_questions() elif dataset == "snli": train, dev = datasets.snli() elif dataset == "stackxc": train, dev = datasets.stack_exchange() elif dataset in ("quora+snli", "snli+quora"): train, dev = datasets.quora_questions() train2, dev2 = datasets.snli() train.extend(train2) dev.extend(dev2) else: raise ValueError("Unknown dataset: %s" % dataset) get_ids = get_word_ids(Model.ops) train_X, train_y = preprocess(model.ops, nlp, train, get_ids) dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids) print("Initialize with data (LSUV)") print(dev_y.shape) with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as ( trainer, optimizer, ): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = min_batch_size batch_size = float(min_batch_size) print("Accuracy before training", model.evaluate(dev_X, dev_y)) print("Train") global epoch_train_acc for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) assert yh.shape == y.shape, (yh.shape, y.shape) # No auto-diff: Just get a callback and pass the data through. # Hardly a hardship, and it means we don't have to create/maintain # a computational graph. We just use closures. assert (yh >= 0.0).all() train_acc = (yh.argmax(axis=1) == y.argmax(axis=1)).sum() epoch_train_acc += train_acc backprop(yh - y, optimizer) # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001 if out_loc: out_loc = Path(out_loc) print("Saving to", out_loc) with out_loc.open("wb") as file_: pickle.dump(model, file_, -1)
def __init__(self, length): Model.__init__(self) self.nO = length
def main(dataset='quora', width=50, depth=2, min_batch_size=1, max_batch_size=512, dropout=0.2, dropout_decay=0.0, pooling="mean+max", nb_epoch=5, pieces=3, L2=0.0, use_gpu=False, out_loc=None, quiet=False, job_id=None, ws_api_url=None, rest_api_url=None): global CTX if job_id is not None: CTX = neptune.Context() width = CTX.params.width L2 = CTX.params.L2 nb_epoch = CTX.params.nb_epoch depth = CTX.params.depth max_batch_size = CTX.params.max_batch_size cfg = dict(locals()) if out_loc: out_loc = Path(out_loc) if not out_loc.parent.exists(): raise IOError("Can't open output location: %s" % out_loc) print(cfg) if pooling == 'mean+max': pool_layer = Pooling(mean_pool, max_pool) elif pooling == "mean": pool_layer = mean_pool elif pooling == "max": pool_layer = max_pool else: raise ValueError("Unrecognised pooling", pooling) print("Load spaCy") nlp = get_spacy('en') if use_gpu: Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) Model.lsuv = True #Model.ops = CupyOps() with Model.define_operators({ '>>': chain, '**': clone, '|': concatenate, '+': add }): mwe_encode = ExtractWindow(nW=1) >> BN( Maxout(width, drop_factor=0.0, pieces=pieces)) sent2vec = ( # List[spacy.token.Doc]{B} flatten_add_lengths # : (ids{T}, lengths{B}) >> with_getitem(0, (StaticVectors('en', width) + HashEmbed(width, 3000) + HashEmbed(width, 3000)) #>> Residual(mwe_encode ** 2) ) # : word_ids{T} >> Pooling(mean_pool, max_pool) #>> Residual(BN(Maxout(width*2, pieces=pieces), nO=width*2)**2) >> Maxout(width * 2, pieces=pieces, drop_factor=0.0) >> logistic) model = Siamese(sent2vec, CauchySimilarity(width * 2)) print("Read and parse data: %s" % dataset) if dataset == 'quora': train, dev = datasets.quora_questions() elif dataset == 'snli': train, dev = datasets.snli() elif dataset == 'stackxc': train, dev = datasets.stack_exchange() elif dataset in ('quora+snli', 'snli+quora'): train, dev = datasets.quora_questions() train2, dev2 = datasets.snli() train.extend(train2) dev.extend(dev2) else: raise ValueError("Unknown dataset: %s" % dataset) get_ids = get_word_ids(Model.ops) train_X, train_y = preprocess(model.ops, nlp, train, get_ids) dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids) with model.begin_training(train_X[:10000], train_y[:10000], **cfg) as (trainer, optimizer): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = min_batch_size batch_size = float(min_batch_size) print("Accuracy before training", model.evaluate_logloss(dev_X, dev_y)) print("Train") global epoch_train_acc n_iter = 0 for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) assert yh.shape == y.shape, (yh.shape, y.shape) assert (yh >= 0.).all(), yh train_acc = ((yh >= 0.5) == (y >= 0.5)).sum() loss = model.ops.xp.abs(yh - y).mean() track_stat('loss', n_iter, loss) track_stat('train acc', n_iter, train_acc) track_stat('LR', n_iter, optimizer.lr(n_iter + 1)) epoch_train_acc += train_acc backprop(yh - y, optimizer) optimizer.set_loss(loss) n_iter += 1 # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001 track_stat('Batch size', n_iter, y.shape[0]) if out_loc: out_loc = Path(out_loc) print('Saving to', out_loc) with out_loc.open('wb') as file_: pickle.dump(model, file_, -1)
def main(dataset='quora', width=64, depth=1, min_batch_size=128, max_batch_size=128, dropout=0.0, dropout_decay=0.0, pooling="mean+max", nb_epoch=20, pieces=2, use_gpu=False, out_loc=None, quiet=False): cfg = dict(locals()) if out_loc: out_loc = Path(out_loc) if not out_loc.parent.exists(): raise IOError("Can't open output location: %s" % out_loc) print(cfg) if pooling == 'mean+max': pool_layer = Pooling(mean_pool, max_pool) elif pooling == "mean": pool_layer = mean_pool elif pooling == "max": pool_layer = max_pool else: raise ValueError("Unrecognised pooling", pooling) print("Load spaCy") nlp = get_spacy('en') if use_gpu: Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) with Model.define_operators({ '>>': chain, '**': clone, '|': concatenate, '+': add }): mwe_encode = ExtractWindow(nW=1) >> Maxout( width, width * 3, pieces=pieces) embed = StaticVectors('en', width) #+ Embed(width, width, 5000) sent2mat = (get_word_ids(Model.ops) >> with_flatten(embed >> mwe_encode**depth)) model = Siamese(sent2mat, WordMoversSimilarity(Model.ops)) print("Read and parse data: %s" % dataset) if dataset == 'quora': train, dev = datasets.quora_questions() elif dataset == 'snli': train, dev = datasets.snli() else: raise ValueError("Unknown dataset: %s" % dataset) train_X, train_y = preprocess(model.ops, nlp, train) dev_X, dev_y = preprocess(model.ops, nlp, dev) print("Initialize with data (LSUV)") with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (trainer, optimizer): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = min_batch_size batch_size = float(min_batch_size) print("Accuracy before training", model.evaluate(dev_X, dev_y)) print("Train") global epoch_train_acc for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) # No auto-diff: Just get a callback and pass the data through. # Hardly a hardship, and it means we don't have to create/maintain # a computational graph. We just use closures. train_acc = ((yh >= 0.5) == (y >= 0.5)).sum() epoch_train_acc += train_acc backprop(yh - y, optimizer) # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001 if out_loc: out_loc = Path(out_loc) print('Saving to', out_loc) with out_loc.open('wb') as file_: pickle.dump(model, file_, -1)
def main(dataset='quora', width=64, depth=2, min_batch_size=1, max_batch_size=128, dropout=0.0, dropout_decay=0.0, pooling="mean+max", nb_epoch=20, pieces=3, use_gpu=False, out_loc=None, quiet=False): cfg = dict(locals()) if out_loc: out_loc = Path(out_loc) if not out_loc.parent.exists(): raise IOError("Can't open output location: %s" % out_loc) print(cfg) if pooling == 'mean+max': pool_layer = Pooling(mean_pool, max_pool) elif pooling == "mean": pool_layer = mean_pool elif pooling == "max": pool_layer = max_pool else: raise ValueError("Unrecognised pooling", pooling) print("Load spaCy") nlp = get_spacy('en') #if use_gpu: # Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) with Model.define_operators({'>>': chain, '**': clone, '|': concatenate, '+': add}): mwe_encode = ExtractWindow(nW=1) >> Maxout(width, width*3, pieces=pieces) embed = StaticVectors('en', width)# + Embed(width, width*2, 5000) # Comments indicate the output type and shape at each step of the pipeline. # * B: Number of sentences in the batch # * T: Total number of words in the batch # (i.e. sum(len(sent) for sent in batch)) # * W: Width of the network (input hyper-parameter) # * ids: ID for each word (integers). # * lengths: Number of words in each sentence in the batch (integers) # * floats: Standard dense vector. # (Dimensions annotated in curly braces.) sent2vec = ( # List[spacy.token.Doc]{B} flatten_add_lengths # : (ids{T}, lengths{B}) >> with_getitem(0, # : word_ids{T} embed >> mwe_encode ** depth ) # : (floats{T, W}, lengths{B}) >> pool_layer >> Maxout(width, pieces=pieces) >> Maxout(width, pieces=pieces) ) model = ( ((Arg(0) >> sent2vec) | (Arg(1) >> sent2vec)) >> Maxout(width, pieces=pieces) >> Maxout(width, pieces=pieces) >> Softmax(2) ) print("Read and parse data: %s" % dataset) if dataset == 'quora': train, dev = datasets.quora_questions() elif dataset == 'snli': train, dev = datasets.snli() elif dataset == 'stackxc': train, dev = datasets.stack_exchange() elif dataset in ('quora+snli', 'snli+quora'): train, dev = datasets.quora_questions() train2, dev2 = datasets.snli() train.extend(train2) dev.extend(dev2) else: raise ValueError("Unknown dataset: %s" % dataset) get_ids = get_word_ids(Model.ops) train_X, train_y = preprocess(model.ops, nlp, train, get_ids) dev_X, dev_y = preprocess(model.ops, nlp, dev, get_ids) print("Initialize with data (LSUV)") print(dev_y.shape) with model.begin_training(train_X[:5000], train_y[:5000], **cfg) as (trainer, optimizer): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = min_batch_size batch_size = float(min_batch_size) print("Accuracy before training", model.evaluate(dev_X, dev_y)) print("Train") global epoch_train_acc for X, y in trainer.iterate(train_X, train_y, progress_bar=not quiet): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) assert yh.shape == y.shape, (yh.shape, y.shape) # No auto-diff: Just get a callback and pass the data through. # Hardly a hardship, and it means we don't have to create/maintain # a computational graph. We just use closures. assert (yh >= 0.).all() train_acc = (yh.argmax(axis=1) == y.argmax(axis=1)).sum() epoch_train_acc += train_acc backprop(yh-y, optimizer) # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001 if out_loc: out_loc = Path(out_loc) print('Saving to', out_loc) with out_loc.open('wb') as file_: pickle.dump(model, file_, -1)
def main(loc=None, width=128, depth=2, max_batch_size=128, dropout=0.5, dropout_decay=1e-5, nb_epoch=30, use_gpu=False): cfg = dict(locals()) print("Load spaCy") nlp = spacy.load('en', parser=False, entity=False, matcher=False, tagger=False) if use_gpu: Model.ops = CupyOps() print("Construct model") # Bind operators for the scope of the block: # * chain (>>): Compose models in a 'feed forward' style, # i.e. chain(f, g)(x) -> g(f(x)) # * clone (**): Create n copies of a model, and chain them, i.e. # (f ** 3)(x) -> f''(f'(f(x))), where f, f' and f'' have distinct weights. # * concatenate (|): Merge the outputs of two models into a single vector, # i.e. (f|g)(x) -> hstack(f(x), g(x)) with Model.define_operators({'>>': chain, '**': clone, '|': concatenate}): # Important trick: text isn't like images, and the best way to use # convolution is different. Don't use pooling-over-time. Instead, # use the window to compute one vector per word, and do this N deep. # In the first layer, we adjust each word vector based on the two # surrounding words --- this gives us essentially trigram vectors. # In the next layer, we have a trigram of trigrams --- so we're # conditioning on information from a five word slice. The third layer # gives us 7 words. This is like the BiLSTM insight: we're not trying # to learn a vector for the whole sentence in this step. We're just # trying to learn better, position-sensitive word features. This simple # convolution step is much more efficient than BiLSTM, and can be # computed in parallel for every token in the batch. mwe_encode = ExtractWindow(nW=1) >> Maxout(width, width * 3) # Comments indicate the output type and shape at each step of the pipeline. # * B: Number of sentences in the batch # * T: Total number of words in the batch # (i.e. sum(len(sent) for sent in batch)) # * W: Width of the network (input hyper-parameter) # * ids: ID for each word (integers). # * lengths: Number of words in each sentence in the batch (integers) # * floats: Standard dense vector. # (Dimensions annotated in curly braces.) sent2vec = ( # List[spacy.token.Doc]{B} #get_word_ids # : List[ids]{B} flatten_add_lengths # : (ids{T}, lengths{B}) >> with_getitem( 0, # : word_ids{T} # This class integrates a linear projection layer, and loads # static embeddings (by default, GloVe common crawl). SpacyVectors(nlp, width) # : floats{T, W} >> mwe_encode**depth # : floats{T, W} ) # : (floats{T, W}, lengths{B}) # Useful trick: Why choose between max pool and mean pool? # We may as well have both representations. >> Pooling(mean_pool, max_pool) # : floats{B, 2*W} ) model = (( (Arg(0) >> sent2vec) | (Arg(1) >> sent2vec)) # : floats{B, 4*W} >> Maxout(width, width * 4) # : floats{B, W} >> Maxout(width, width)**depth # : floats{B, W} >> Softmax(3, width) # : floats{B, 2} ) print("Read and parse SNLI data") train, dev = datasets.snli(loc) train_X, train_y = preprocess(model.ops, nlp, train) dev_X, dev_y = preprocess(model.ops, nlp, dev) assert len(dev_y.shape) == 2 print("Initialize with data (LSUV)") with model.begin_training(train_X[:10000], train_y[:10000], **cfg) as (trainer, optimizer): # Pass a callback to print progress. Give it all the local scope, # because why not? trainer.each_epoch.append(track_progress(**locals())) trainer.batch_size = 1 batch_size = 1. print("Accuracy before training", model.evaluate(dev_X, dev_y)) print("Train") global epoch_train_acc for X, y in trainer.iterate(train_X, train_y): # Slightly useful trick: Decay the dropout as training proceeds. yh, backprop = model.begin_update(X, drop=trainer.dropout) # No auto-diff: Just get a callback and pass the data through. # Hardly a hardship, and it means we don't have to create/maintain # a computational graph. We just use closures. backprop(yh - y, optimizer) epoch_train_acc += (yh.argmax(axis=1) == y.argmax(axis=1)).sum() # Slightly useful trick: start with low batch size, accelerate. trainer.batch_size = min(int(batch_size), max_batch_size) batch_size *= 1.001
def __init__(self, storage): Model.__init__(self) self.storage = storage