Exemplo n.º 1
0
def dependency_monkey(
    click_ctx: click.Context,
    *,
    beam_width: int,
    count: int,
    decision_type: str,
    predictor: str,
    report_output: str,
    requirements: str,
    requirements_format: str,
    stack_output: str,
    predictor_config: Optional[str] = None,
    context: Optional[str] = None,
    dry_run: bool = False,
    library_usage: Optional[str] = None,
    limit_latest_versions: Optional[int] = None,
    no_pretty: bool = False,
    plot: Optional[str] = None,
    runtime_environment: str = None,
    seed: Optional[int] = None,
    pipeline: Optional[str] = None,
    prescription: Optional[str] = None,
    dev: bool = False,
):
    """Generate software stacks based on all valid resolutions that conform version ranges."""
    parameters = locals()
    parameters.pop("click_ctx")

    if pipeline and prescription:
        sys.exit("Options --pipeline/--prescription are disjoint")

    if library_usage:
        if os.path.isfile(library_usage):
            try:
                with open(library_usage, "r") as f:
                    library_usage = json.load(f)
            except Exception:
                _LOGGER.error("Failed to load library usage file %r",
                              library_usage)
                raise
        else:
            library_usage = json.loads(library_usage)

        # Show library usage in the final report.
        parameters["library_usage"] = library_usage

    runtime_environment = RuntimeEnvironment.load(runtime_environment)
    parameters["runtime_environment"] = runtime_environment.to_dict()

    decision_type = DecisionType.by_name(decision_type)
    requirements_format = PythonRecommendationOutput.by_name(
        requirements_format)
    project = _instantiate_project(requirements,
                                   runtime_environment=runtime_environment)
    parameters["requirements"] = project.pipfile.to_dict()
    parameters["project"] = project.to_dict()

    pipeline_config = None if pipeline is None else PipelineBuilder.load(
        pipeline)
    if pipeline_config is not None:
        parameters["pipeline"] = pipeline_config.to_dict()

    prescription_instance = None
    if prescription:
        if len(prescription) == 1:
            # Click does not support multiple parameters when supplied via env vars. Perform split on delimiter.
            prescription_instance = Prescription.load(
                *prescription[0].split(","))
        else:
            prescription_instance = Prescription.load(*prescription)

    # Use current time to make sure we have possibly reproducible runs - the seed is reported.
    seed = seed if seed is not None else int(time.time())
    predictor_class = _get_dependency_monkey_predictor(predictor,
                                                       decision_type)
    predictor_kwargs = _get_predictor_kwargs(predictor_config)
    predictor_instance = predictor_class(**predictor_kwargs,
                                         keep_history=plot is not None)
    _LOGGER.info(
        "Starting resolver using predictor %r with random seed set to %r, predictor parameters: %r",
        predictor_class.__name__,
        seed,
        predictor_kwargs,
    )
    random.seed(seed)
    termial_random.seed(seed)

    resolver = Resolver.get_dependency_monkey_instance(
        predictor=predictor_instance,
        project=project,
        library_usage=library_usage,
        count=count,
        beam_width=beam_width,
        limit_latest_versions=limit_latest_versions,
        decision_type=decision_type,
        pipeline_config=pipeline_config,
        prescription=prescription_instance,
        cli_parameters=parameters,
    )

    del prescription  # No longer needed, garbage collect it.

    context_content = {}
    try:
        with open(context) as f:
            context_content = json.load(f)
    except (FileNotFoundError, IOError):
        # IOError raised if context is too large to be handled with open.
        context_content = json.loads(context)
    parameters["context"] = context_content

    dependency_monkey_runner = DependencyMonkey(
        resolver=resolver,
        stack_output=stack_output,
        context=context_content,
        dry_run=dry_run,
        decision_type=decision_type,
    )

    print_func = _PrintFunc(
        partial(
            print_command_result,
            click_ctx=click_ctx,
            analyzer=analyzer_name,
            analyzer_version=analyzer_version,
            output=report_output,
            pretty=not no_pretty,
        ))

    exit_code = subprocess_run(
        dependency_monkey_runner,
        print_func,
        result_dict={"parameters": parameters},
        plot=plot,
        with_devel=dev,
        user_stack_scoring=False,
        # Keep verbose output (stating pipeline units run) in dependency-monkey.
        verbose=True,
    )

    click_ctx.exit(int(exit_code != 0))
Exemplo n.º 2
0
def advise(
    click_ctx: click.Context,
    *,
    beam_width: int,
    count: int,
    limit: int,
    output: str,
    recommendation_type: str,
    requirements_format: str,
    requirements: str,
    predictor: str,
    predictor_config: Optional[str] = None,
    library_usage: Optional[str] = None,
    limit_latest_versions: Optional[int] = None,
    no_pretty: bool = False,
    plot: Optional[str] = None,
    requirements_locked: Optional[str] = None,
    runtime_environment: Optional[str] = None,
    seed: Optional[int] = None,
    pipeline: Optional[str] = None,
    user_stack_scoring: bool = True,
    dev: bool = False,
):
    """Advise package and package versions in the given stack or on solely package only."""
    parameters = locals()
    parameters.pop("click_ctx")

    if library_usage:
        if os.path.isfile(library_usage):
            try:
                library_usage = json.loads(Path(library_usage).read_text())
            except Exception:
                _LOGGER.error("Failed to load library usage file %r",
                              library_usage)
                raise
        else:
            library_usage = json.loads(library_usage)

    runtime_environment = RuntimeEnvironment.load(runtime_environment)
    recommendation_type = RecommendationType.by_name(recommendation_type)
    requirements_format = PythonRecommendationOutput.by_name(
        requirements_format)
    project = _instantiate_project(requirements, requirements_locked,
                                   runtime_environment)
    pipeline_config = None if pipeline is None else PipelineBuilder.load(
        pipeline)

    parameters["project"] = project.to_dict()
    if pipeline_config is not None:
        parameters["pipeline"] = pipeline_config.to_dict()
    predictor_class, predictor_kwargs = _get_adviser_predictor(
        predictor, recommendation_type)
    predictor_kwargs = _get_predictor_kwargs(
        predictor_config) or predictor_kwargs
    predictor_instance = predictor_class(**predictor_kwargs,
                                         keep_history=plot is not None)

    # Use current time to make sure we have possibly reproducible runs - the seed is reported.
    seed = seed if seed is not None else int(time.time())
    _LOGGER.info(
        "Starting resolver using %r predictor with random seed set to %r, predictor parameters: %r",
        predictor_class.__name__,
        seed,
        predictor_kwargs,
    )
    random.seed(seed)
    termial_random.seed(seed)

    resolver = Resolver.get_adviser_instance(
        predictor=predictor_instance,
        project=project,
        library_usage=library_usage,
        recommendation_type=recommendation_type,
        limit=limit,
        count=count,
        beam_width=beam_width,
        limit_latest_versions=limit_latest_versions,
        pipeline_config=pipeline_config,
        cli_parameters=parameters,
    )

    print_func = _PrintFunc(
        partial(
            print_command_result,
            click_ctx=click_ctx,
            analyzer=analyzer_name,
            analyzer_version=analyzer_version,
            output=output,
            pretty=not no_pretty,
        ))

    exit_code = subprocess_run(
        resolver,
        print_func,
        plot=plot,
        result_dict={"parameters": parameters},
        with_devel=dev,
        user_stack_scoring=user_stack_scoring,
    )

    click_ctx.exit(int(exit_code != 0))
Exemplo n.º 3
0
def advise(
    click_ctx: click.Context,
    *,
    beam_width: int,
    count: int,
    limit: int,
    output: str,
    recommendation_type: str,
    requirements_format: str,
    requirements: str,
    predictor: str,
    predictor_config: Optional[str] = None,
    library_usage: Optional[str] = None,
    limit_latest_versions: Optional[int] = None,
    no_pretty: bool = False,
    plot: Optional[str] = None,
    requirements_locked: Optional[str] = None,
    runtime_environment: Optional[str] = None,
    seed: Optional[int] = None,
    pipeline: Optional[str] = None,
    prescription: Optional[str] = None,
    constraints: Optional[str] = None,
    user_stack_scoring: bool = True,
    dev: bool = False,
    labels: Optional[str] = None,
):
    """Advise package and package versions in the given stack or on solely package only."""
    parameters = locals()
    parameters.pop("click_ctx")

    if pipeline and prescription:
        sys.exit("Options --pipeline/--prescription are disjoint")

    if library_usage:
        if os.path.isfile(library_usage):
            try:
                with open(library_usage, "r") as f:
                    library_usage = json.load(f)
            except Exception:
                _LOGGER.error("Failed to load library usage file %r",
                              library_usage)
                raise
        else:
            library_usage = json.loads(library_usage)

        # Show library usage in the final report.
        parameters["library_usage"] = library_usage

    labels_dict = {}
    if labels:
        if os.path.isfile(labels):
            try:
                with open(labels, "r") as f:
                    labels_dict = json.load(f)
            except Exception:
                _LOGGER.error("Failed to load labels file %r", labels)
                raise
        else:
            labels_dict = json.loads(labels)

        # Show labels in the final report.
        parameters["labels"] = labels_dict

    runtime_environment = RuntimeEnvironment.load(runtime_environment)
    recommendation_type = RecommendationType.by_name(recommendation_type)
    _LOGGER.info("Using recommendation type %s",
                 recommendation_type.name.lower())

    requirements_format = PythonRecommendationOutput.by_name(
        requirements_format)
    project = _instantiate_project(requirements,
                                   requirements_locked,
                                   runtime_environment=runtime_environment,
                                   constraints=constraints)

    pipeline_config = None
    if pipeline:
        pipeline_config = PipelineBuilder.load(pipeline)

    parameters["project"] = project.to_dict()
    if pipeline_config is not None:
        parameters["pipeline"] = pipeline_config.to_dict()

    prescription_instance = None
    if prescription:
        if len(prescription) == 1:
            # Click does not support multiple parameters when supplied via env vars. Perform split on delimiter.
            prescription_instance = Prescription.load(
                *prescription[0].split(","))
        else:
            prescription_instance = Prescription.load(*prescription)

    predictor_class, predictor_kwargs = _get_adviser_predictor(
        predictor, recommendation_type)
    predictor_kwargs = _get_predictor_kwargs(
        predictor_config) or predictor_kwargs
    predictor_instance = predictor_class(**predictor_kwargs,
                                         keep_history=plot is not None)

    # Use current time to make sure we have possibly reproducible runs - the seed is reported.
    seed = seed if seed is not None else int(time.time())
    _LOGGER.info(
        "Starting resolver using %r predictor with random seed set to %r, predictor parameters: %r",
        predictor_class.__name__,
        seed,
        predictor_kwargs,
    )
    random.seed(seed)
    termial_random.seed(seed)

    resolver = Resolver.get_adviser_instance(
        predictor=predictor_instance,
        project=project,
        labels=labels_dict,
        library_usage=library_usage,
        recommendation_type=recommendation_type,
        limit=limit,
        count=count,
        beam_width=beam_width,
        limit_latest_versions=limit_latest_versions,
        pipeline_config=pipeline_config,
        prescription=prescription_instance,
        cli_parameters=parameters,
    )

    del prescription  # No longer needed, garbage collect it.

    print_func = _PrintFunc(
        partial(
            print_command_result,
            click_ctx=click_ctx,
            analyzer=analyzer_name,
            analyzer_version=analyzer_version,
            output=output,
            pretty=not no_pretty,
        ))

    exit_code = subprocess_run(
        resolver,
        print_func,
        plot=plot,
        result_dict={"parameters": parameters},
        with_devel=dev,
        user_stack_scoring=user_stack_scoring,
        verbose=click_ctx.parent.params.get("verbose", False),
    )

    # Push metrics.
    if _THOTH_METRICS_PUSHGATEWAY_URL:
        _METRIC_INFO.labels(_THOTH_DEPLOYMENT_NAME, analyzer_version).inc()
        _METRIC_DATABASE_SCHEMA_SCRIPT.labels(
            analyzer_name, resolver.graph.get_script_alembic_version_head(),
            _THOTH_DEPLOYMENT_NAME).inc()

        try:
            _LOGGER.debug("Submitting metrics to Prometheus pushgateway %s",
                          _THOTH_METRICS_PUSHGATEWAY_URL)
            push_to_gateway(_THOTH_METRICS_PUSHGATEWAY_URL,
                            job="adviser",
                            registry=prometheus_registry)
        except Exception:
            _LOGGER.exception("An error occurred when pushing metrics")

    click_ctx.exit(int(exit_code != 0))
Exemplo n.º 4
0
def dependency_monkey(
    click_ctx: click.Context,
    *,
    beam_width: int,
    count: int,
    decision_type: str,
    predictor: str,
    report_output: str,
    requirements: str,
    requirements_format: str,
    stack_output: str,
    context: Optional[str] = None,
    dry_run: bool = False,
    library_usage: Optional[str] = None,
    limit_latest_versions: Optional[int] = None,
    no_pretty: bool = False,
    plot: Optional[str] = None,
    runtime_environment: str = None,
    seed: Optional[int] = None,
    pipeline: Optional[str] = None,
    dev: bool = False,
):
    """Generate software stacks based on all valid resolutions that conform version ranges."""
    parameters = locals()
    parameters.pop("click_ctx")

    if library_usage:
        if os.path.isfile(library_usage):
            try:
                library_usage = json.loads(Path(library_usage).read_text())
            except Exception as exc:
                _LOGGER.error("Failed to load library usage file %r", library_usage)
                raise
        else:
            library_usage = json.loads(library_usage)

    runtime_environment = RuntimeEnvironment.load(runtime_environment)
    requirements_format = PythonRecommendationOutput.by_name(requirements_format)
    project = _instantiate_project(
        requirements, runtime_environment=runtime_environment
    )
    pipeline_config = None if pipeline is None else PipelineBuilder.load(pipeline)

    parameters["project"] = project.to_dict()
    if pipeline_config is not None:
        parameters["pipeline"] = pipeline_config.to_dict()

    # Use current time to make sure we have possibly reproducible runs - the seed is reported.
    seed = seed if seed is not None else int(time.time())
    _LOGGER.info(
        "Starting resolver using predictor %r with random seed set to %r",
        predictor,
        seed,
    )
    random.seed(seed)

    resolver = Resolver.get_dependency_monkey_instance(
        predictor=getattr(predictors, predictor)(keep_history=plot is not None),
        project=project,
        library_usage=library_usage,
        count=count,
        beam_width=beam_width,
        limit_latest_versions=limit_latest_versions,
        decision_type=decision_type,
        pipeline_config=pipeline_config,
        cli_parameters=parameters,
    )

    context_content = {}
    try:
        with open(context) as f:
            context_content = json.load(f)
    except (FileNotFoundError, IOError):
        # IOError raised if context is too large to be handled with open.
        context_content = json.loads(context)

    dependency_monkey_runner = DependencyMonkey(
        resolver=resolver,
        stack_output=stack_output,
        context=context_content,
        dry_run=dry_run,
        decision_type=decision_type,
    )

    print_func = _PrintFunc(
        partial(
            print_command_result,
            click_ctx=click_ctx,
            analyzer=analyzer_name,
            analyzer_version=analyzer_version,
            output=report_output,
            pretty=not no_pretty,
        )
    )

    exit_code = subprocess_run(
        dependency_monkey_runner,
        print_func,
        result_dict={"parameters": parameters},
        plot=plot,
        with_devel=dev,
        user_stack_scoring=False,
    )

    click_ctx.exit(int(exit_code != 0))