Exemplo n.º 1
0
def test_spectrum_constructor_no_background():

    ebounds = ChannelSet.from_list_of_edges(np.array([0,1,2,3,4,5]))

    obs_spectrum = BinnedSpectrum(counts=np.ones(len(ebounds)),exposure=1,ebounds=ebounds, is_poisson=True)

    assert np.all(obs_spectrum.counts == obs_spectrum.rates)

    specLike = SpectrumLike('fake', observation=obs_spectrum, background=None)

    specLike.__repr__()
Exemplo n.º 2
0
def test_spectrum_constructor_no_background():

    ebounds = ChannelSet.from_list_of_edges(np.array([0, 1, 2, 3, 4, 5]))

    obs_spectrum = BinnedSpectrum(counts=np.ones(len(ebounds)),
                                  exposure=1,
                                  ebounds=ebounds,
                                  is_poisson=True)

    assert np.all(obs_spectrum.counts == obs_spectrum.rates)

    specLike = SpectrumLike("fake", observation=obs_spectrum, background=None)

    specLike.__repr__()
Exemplo n.º 3
0
def spectrum_addition(obs_spectrum_1,obs_spectrum_2,obs_spectrum_incompatible,addition,addition_proof):
    obs_spectrum = addition(obs_spectrum_1, obs_spectrum_2)
    
    addition_proof(obs_spectrum_1, obs_spectrum_2, obs_spectrum)

    assert obs_spectrum_1.exposure + obs_spectrum_2.exposure == obs_spectrum.exposure

    assert np.all(obs_spectrum.counts == obs_spectrum.rates * obs_spectrum.exposure)

    specLike = SpectrumLike('fake', observation=obs_spectrum, background=None)

    assert obs_spectrum.count_errors is None or obs_spectrum.count_errors.__class__ == np.ndarray

    specLike.__repr__()
Exemplo n.º 4
0
def spectrum_addition(obs_spectrum_1, obs_spectrum_2,
                      obs_spectrum_incompatible, addition, addition_proof):
    obs_spectrum = addition(obs_spectrum_1, obs_spectrum_2)

    addition_proof(obs_spectrum_1, obs_spectrum_2, obs_spectrum)

    assert obs_spectrum_1.exposure + obs_spectrum_2.exposure == obs_spectrum.exposure

    assert np.all(obs_spectrum.counts == obs_spectrum.rates *
                  obs_spectrum.exposure)

    specLike = SpectrumLike('fake', observation=obs_spectrum, background=None)

    assert obs_spectrum.count_errors is None or obs_spectrum.count_errors.__class__ == np.ndarray

    specLike.__repr__()