Exemplo n.º 1
0
def test_pg(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = DummyVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.state_shape, args.action_shape,
              hidden_sizes=args.hidden_sizes,
              device=args.device, softmax=True).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    dist = torch.distributions.Categorical
    policy = PGPolicy(net, optim, dist, args.gamma,
                      reward_normalization=args.rew_norm,
                      action_space=env.action_space)
    # collector
    train_collector = Collector(
        policy, train_envs,
        VectorReplayBuffer(args.buffer_size, len(train_envs)),
        exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'pg')
    writer = SummaryWriter(log_path)
    logger = BasicLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    # trainer
    result = onpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size,
        episode_per_collect=args.episode_per_collect, stop_fn=stop_fn, save_fn=save_fn,
        logger=logger)
    assert stop_fn(result['best_reward'])
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        policy.eval()
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        rews, lens = result["rews"], result["lens"]
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
Exemplo n.º 2
0
def test_fn(size=2560):
    policy = PGPolicy(None, None, None, discount_factor=0.1)
    buf = ReplayBuffer(100)
    buf.add(1, 1, 1, 1, 1)
    fn = policy.process_fn
    # fn = compute_return_base
    batch = Batch(
        done=np.array([1, 0, 0, 1, 0, 1, 0, 1.]),
        rew=np.array([0, 1, 2, 3, 4, 5, 6, 7.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([0, 1.23, 2.3, 3, 4.5, 5, 6.7, 7])
    assert abs(batch.returns - ans).sum() <= 1e-5
    batch = Batch(
        done=np.array([0, 1, 0, 1, 0, 1, 0.]),
        rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([7.6, 6, 1.2, 2, 3.4, 4, 5])
    assert abs(batch.returns - ans).sum() <= 1e-5
    batch = Batch(
        done=np.array([0, 1, 0, 1, 0, 0, 1.]),
        rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([7.6, 6, 1.2, 2, 3.45, 4.5, 5])
    assert abs(batch.returns - ans).sum() <= 1e-5
    batch = Batch(done=np.array([0, 0, 0, 1., 0, 0, 0, 1, 0, 0, 0, 1]),
                  rew=np.array([
                      101, 102, 103., 200, 104, 105, 106, 201, 107, 108, 109,
                      202
                  ]))
    v = np.array([2., 3., 4, -1, 5., 6., 7, -2, 8., 9., 10, -3])
    ret = policy.compute_episodic_return(batch, v, gamma=0.99, gae_lambda=0.95)
    returns = np.array([
        454.8344, 376.1143, 291.298, 200., 464.5610, 383.1085, 295.387, 201.,
        474.2876, 390.1027, 299.476, 202.
    ])
    assert abs(ret.returns - returns).sum() <= 1e-3
    if __name__ == '__main__':
        batch = Batch(
            done=np.random.randint(100, size=size) == 0,
            rew=np.random.random(size),
        )
        cnt = 3000
        t = time.time()
        for _ in range(cnt):
            compute_return_base(batch)
        print(f'vanilla: {(time.time() - t) / cnt}')
        t = time.time()
        for _ in range(cnt):
            policy.process_fn(batch, buf, 0)
        print(f'policy: {(time.time() - t) / cnt}')
Exemplo n.º 3
0
def test_pg(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(
        args.layer_num, args.state_shape, args.action_shape,
        device=args.device, softmax=True)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    dist = torch.distributions.Categorical
    policy = PGPolicy(net, optim, dist, args.gamma)
    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
Exemplo n.º 4
0
def test_pg(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # train_envs = gym.make(args.task)
    # you can also use tianshou.env.SubprocVectorEnv
    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num,
              args.state_shape,
              args.action_shape,
              device=args.device,
              softmax=True)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    dist = torch.distributions.Categorical
    policy = PGPolicy(net, optim, dist, args.gamma)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    writer = SummaryWriter(args.logdir + '/' + 'pg')

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    result = onpolicy_trainer(policy,
                              train_collector,
                              test_collector,
                              args.epoch,
                              args.step_per_epoch,
                              args.collect_per_step,
                              args.repeat_per_collect,
                              args.test_num,
                              args.batch_size,
                              stop_fn=stop_fn,
                              writer=writer)
    assert stop_fn(result['best_reward'])
    train_collector.close()
    test_collector.close()
    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()
Exemplo n.º 5
0
def test_fn(size=2560):
    policy = PGPolicy(None, None, None, discount_factor=0.1)
    buf = ReplayBuffer(100)
    buf.add(1, 1, 1, 1, 1)
    fn = policy.process_fn
    # fn = compute_return_base
    batch = Batch(
        done=np.array([1, 0, 0, 1, 0, 1, 0, 1.]),
        rew=np.array([0, 1, 2, 3, 4, 5, 6, 7.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([0, 1.23, 2.3, 3, 4.5, 5, 6.7, 7])
    assert abs(batch.returns - ans).sum() <= 1e-5
    batch = Batch(
        done=np.array([0, 1, 0, 1, 0, 1, 0.]),
        rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([7.6, 6, 1.2, 2, 3.4, 4, 5])
    assert abs(batch.returns - ans).sum() <= 1e-5
    batch = Batch(
        done=np.array([0, 1, 0, 1, 0, 0, 1.]),
        rew=np.array([7, 6, 1, 2, 3, 4, 5.]),
    )
    batch = fn(batch, buf, 0)
    ans = np.array([7.6, 6, 1.2, 2, 3.45, 4.5, 5])
    assert abs(batch.returns - ans).sum() <= 1e-5
    if __name__ == '__main__':
        batch = Batch(
            done=np.random.randint(100, size=size) == 0,
            rew=np.random.random(size),
        )
        cnt = 3000
        t = time.time()
        for _ in range(cnt):
            compute_return_base(batch)
        print(f'vanilla: {(time.time() - t) / cnt}')
        t = time.time()
        for _ in range(cnt):
            policy.process_fn(batch, buf, 0)
        print(f'policy: {(time.time() - t) / cnt}')
Exemplo n.º 6
0
def test_reinforce(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)],
        norm_obs=True)
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)],
        norm_obs=True,
        obs_rms=train_envs.obs_rms,
        update_obs_rms=False)

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net_a = Net(args.state_shape,
                hidden_sizes=args.hidden_sizes,
                activation=nn.Tanh,
                device=args.device)
    actor = ActorProb(net_a,
                      args.action_shape,
                      max_action=args.max_action,
                      unbounded=True,
                      device=args.device).to(args.device)
    torch.nn.init.constant_(actor.sigma_param, -0.5)
    for m in actor.modules():
        if isinstance(m, torch.nn.Linear):
            # orthogonal initialization
            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
            torch.nn.init.zeros_(m.bias)
    # do last policy layer scaling, this will make initial actions have (close to)
    # 0 mean and std, and will help boost performances,
    # see https://arxiv.org/abs/2006.05990, Fig.24 for details
    for m in actor.mu.modules():
        if isinstance(m, torch.nn.Linear):
            torch.nn.init.zeros_(m.bias)
            m.weight.data.copy_(0.01 * m.weight.data)

    optim = torch.optim.Adam(actor.parameters(), lr=args.lr)
    lr_scheduler = None
    if args.lr_decay:
        # decay learning rate to 0 linearly
        max_update_num = np.ceil(
            args.step_per_epoch / args.step_per_collect) * args.epoch

        lr_scheduler = LambdaLR(
            optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)

    def dist(*logits):
        return Independent(Normal(*logits), 1)

    policy = PGPolicy(actor,
                      optim,
                      dist,
                      discount_factor=args.gamma,
                      reward_normalization=args.rew_norm,
                      action_scaling=True,
                      action_bound_method=args.action_bound_method,
                      lr_scheduler=lr_scheduler,
                      action_space=env.action_space)

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    # log
    t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
    log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_reinforce'
    log_path = os.path.join(args.logdir, args.task, 'reinforce', log_file)
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = BasicLogger(writer, update_interval=10, train_interval=100)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    if not args.watch:
        # trainer
        result = onpolicy_trainer(policy,
                                  train_collector,
                                  test_collector,
                                  args.epoch,
                                  args.step_per_epoch,
                                  args.repeat_per_collect,
                                  args.test_num,
                                  args.batch_size,
                                  step_per_collect=args.step_per_collect,
                                  save_fn=save_fn,
                                  logger=logger,
                                  test_in_train=False)
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}'
    )
Exemplo n.º 7
0
def test_reinforce(args=get_args()):
    env, train_envs, test_envs = make_mujoco_env(args.task,
                                                 args.seed,
                                                 args.training_num,
                                                 args.test_num,
                                                 obs_norm=True)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # model
    net_a = Net(
        args.state_shape,
        hidden_sizes=args.hidden_sizes,
        activation=nn.Tanh,
        device=args.device,
    )
    actor = ActorProb(
        net_a,
        args.action_shape,
        max_action=args.max_action,
        unbounded=True,
        device=args.device,
    ).to(args.device)
    torch.nn.init.constant_(actor.sigma_param, -0.5)
    for m in actor.modules():
        if isinstance(m, torch.nn.Linear):
            # orthogonal initialization
            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
            torch.nn.init.zeros_(m.bias)
    # do last policy layer scaling, this will make initial actions have (close to)
    # 0 mean and std, and will help boost performances,
    # see https://arxiv.org/abs/2006.05990, Fig.24 for details
    for m in actor.mu.modules():
        if isinstance(m, torch.nn.Linear):
            torch.nn.init.zeros_(m.bias)
            m.weight.data.copy_(0.01 * m.weight.data)

    optim = torch.optim.Adam(actor.parameters(), lr=args.lr)
    lr_scheduler = None
    if args.lr_decay:
        # decay learning rate to 0 linearly
        max_update_num = np.ceil(
            args.step_per_epoch / args.step_per_collect) * args.epoch

        lr_scheduler = LambdaLR(
            optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)

    def dist(*logits):
        return Independent(Normal(*logits), 1)

    policy = PGPolicy(
        actor,
        optim,
        dist,
        discount_factor=args.gamma,
        reward_normalization=args.rew_norm,
        action_scaling=True,
        action_bound_method=args.action_bound_method,
        lr_scheduler=lr_scheduler,
        action_space=env.action_space,
    )

    # load a previous policy
    if args.resume_path:
        ckpt = torch.load(args.resume_path, map_location=args.device)
        policy.load_state_dict(ckpt["model"])
        train_envs.set_obs_rms(ckpt["obs_rms"])
        test_envs.set_obs_rms(ckpt["obs_rms"])
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "reinforce"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        state = {
            "model": policy.state_dict(),
            "obs_rms": train_envs.get_obs_rms()
        }
        torch.save(state, os.path.join(log_path, "policy.pth"))

    if not args.watch:
        # trainer
        result = onpolicy_trainer(
            policy,
            train_collector,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.repeat_per_collect,
            args.test_num,
            args.batch_size,
            step_per_collect=args.step_per_collect,
            save_best_fn=save_best_fn,
            logger=logger,
            test_in_train=False,
        )
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}'
    )
Exemplo n.º 8
0
def run_pg(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n

    train_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])

    test_envs = VectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)

    # model
    net = Net(args.layer_num,
              args.state_shape,
              args.action_shape,
              device=args.device,
              softmax=True)
    net = net.to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    dist = torch.distributions.Categorical
    policy = PGPolicy(net,
                      optim,
                      dist,
                      args.gamma,
                      reward_normalization=args.rew_norm)
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    if not os.path.isdir(os.path.join(args.logdir)):
        os.mkdir(os.path.join(args.logdir))

    if not os.path.isdir(os.path.join(args.logdir, args.task)):
        os.mkdir(os.path.join(args.logdir, args.task))

    if not os.path.isdir(os.path.join(args.logdir, args.task, 'pg')):
        os.mkdir(os.path.join(args.logdir, args.task, 'pg'))

    log_path = os.path.join(args.logdir, args.task, 'pg')

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold

    # trainer
    onpolicy_trainer(policy,
                     train_collector,
                     test_collector,
                     args.epoch,
                     args.step_per_epoch,
                     args.collect_per_step,
                     args.repeat_per_collect,
                     args.test_num,
                     args.batch_size,
                     stop_fn=stop_fn,
                     save_fn=save_fn)

    train_collector.close()
    test_collector.close()

    if __name__ == '__main__':

        # Let's watch its performance!
        env = gym.make(args.task)
        collector = Collector(policy, env)
        result = collector.collect(n_episode=1, render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
        collector.close()