Exemplo n.º 1
0
def test_sac(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    if args.training_num > 1:
        train_envs = SubprocVectorEnv(
            [lambda: gym.make(args.task) for _ in range(args.training_num)]
        )
    else:
        train_envs = gym.make(args.task)
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
    )
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
    actor = ActorProb(
        net_a,
        args.action_shape,
        max_action=args.max_action,
        device=args.device,
        unbounded=True,
        conditioned_sigma=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        estimation_step=args.n_step,
        action_space=env.action_space
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    train_collector.collect(n_step=args.start_timesteps, random=True)
    # log
    t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
    log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_sac'
    log_path = os.path.join(args.logdir, args.task, 'sac', log_file)
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    logger = TensorboardLogger(writer)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    if not args.watch:
        # trainer
        result = offpolicy_trainer(
            policy,
            train_collector,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.step_per_collect,
            args.test_num,
            args.batch_size,
            save_fn=save_fn,
            logger=logger,
            update_per_step=args.update_per_step,
            test_in_train=False
        )
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num, render=args.render)
    print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
Exemplo n.º 2
0
def test_sac():
    args, log_path, writer = get_args()
    env = gym.make(args.task)
    if args.task == 'Pendulum-v0':
        env.spec.reward_threshold = -250
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    # you can also use tianshou.env.SubprocVectorEnv
    # train_envs = gym.make(args.task)
    train_envs = ShmPipeVecEnv([
        lambda: TransformReward(BipedalWrapper(gym.make(args.task)), lambda
                                reward: 5 * reward)
        for _ in range(args.training_num)
    ])
    # test_envs = gym.make(args.task)
    test_envs = ShmPipeVecEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed + 1)
    # model
    actor = ActorProb(args.layer_num, args.state_shape, args.action_shape,
                      args.max_action, args.device).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    critic = DQCritic(args.layer_num, args.state_shape, args.action_shape,
                      args.device).to(args.device)
    critic_target = DQCritic(args.layer_num, args.state_shape,
                             args.action_shape, args.device).to(args.device)
    critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
    policy = SACPolicy(actor,
                       actor_optim,
                       critic,
                       critic_optim,
                       critic_target,
                       env.action_space,
                       args.device,
                       args.tau,
                       args.gamma,
                       args.alpha,
                       reward_normalization=args.rew_norm,
                       ignore_done=False)

    if args.mode == 'test':
        policy.load_state_dict(
            torch.load("{}/{}/{}/policy.pth".format(args.logdir, args.task,
                                                    args.comment),
                       map_location=args.device))
        env = gym.make(args.task)
        collector = Collector(policy, env
                              # Monitor(env, 'video', force=True)
                              )
        result = collector.collect(n_episode=10, render=args.render)
        print(
            f'Final reward: {result["ep/reward"]}, length: {result["ep/len"]}')
        collector.close()
        exit()
    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    train_collector.collect(10000, sampling=True)
    test_collector = Collector(policy, test_envs)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(x):
        return x >= env.spec.reward_threshold + 5

    # trainer
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_episode,
                               args.batch_size,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer)
    assert stop_fn(result['best_reward'])

    pprint.pprint(result)
Exemplo n.º 3
0
def test_sac(args=get_args()):
    env, train_envs, test_envs = make_mujoco_env(args.task,
                                                 args.seed,
                                                 args.training_num,
                                                 args.test_num,
                                                 obs_norm=False)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # model
    net_a = Net(args.state_shape,
                hidden_sizes=args.hidden_sizes,
                device=args.device)
    actor = ActorProb(
        net_a,
        args.action_shape,
        max_action=args.max_action,
        device=args.device,
        unbounded=True,
        conditioned_sigma=True,
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    net_c2 = Net(
        args.state_shape,
        args.action_shape,
        hidden_sizes=args.hidden_sizes,
        concat=True,
        device=args.device,
    )
    critic1 = Critic(net_c1, device=args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    critic2 = Critic(net_c2, device=args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        estimation_step=args.n_step,
        action_space=env.action_space,
    )

    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    if args.training_num > 1:
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
    else:
        buffer = ReplayBuffer(args.buffer_size)
    train_collector = Collector(policy,
                                train_envs,
                                buffer,
                                exploration_noise=True)
    test_collector = Collector(policy, test_envs)
    train_collector.collect(n_step=args.start_timesteps, random=True)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "sac"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    if not args.watch:
        # trainer
        result = offpolicy_trainer(
            policy,
            train_collector,
            test_collector,
            args.epoch,
            args.step_per_epoch,
            args.step_per_collect,
            args.test_num,
            args.batch_size,
            save_best_fn=save_best_fn,
            logger=logger,
            update_per_step=args.update_per_step,
            test_in_train=False,
        )
        pprint.pprint(result)

    # Let's watch its performance!
    policy.eval()
    test_envs.seed(args.seed)
    test_collector.reset()
    result = test_collector.collect(n_episode=args.test_num,
                                    render=args.render)
    print(
        f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}'
    )
def test_sac_bipedal(args=get_args()):
    env = EnvWrapper(args.task)

    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]

    train_envs = SubprocVectorEnv(
        [lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv([lambda: EnvWrapper(args.task, reward_scale=1)
                                  for _ in range(args.test_num)])

    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)

    # model
    net_a = Net(args.layer_num, args.state_shape, device=args.device)
    actor = ActorProb(
        net_a, args.action_shape, args.max_action, args.device, unbounded=True
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

    net_c1 = Net(args.layer_num, args.state_shape,
                 args.action_shape, concat=True, device=args.device)
    critic1 = Critic(net_c1, args.device).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)

    net_c2 = Net(args.layer_num, args.state_shape,
                 args.action_shape, concat=True, device=args.device)
    critic2 = Critic(net_c2, args.device).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
        action_range=[env.action_space.low[0], env.action_space.high[0]],
        tau=args.tau, gamma=args.gamma, alpha=args.alpha,
        reward_normalization=args.rew_norm,
        ignore_done=args.ignore_done,
        estimation_step=args.n_step)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path))
        print("Loaded agent from: ", args.resume_path)

    # collector
    train_collector = Collector(
        policy, train_envs, ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # train_collector.collect(n_step=args.buffer_size)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return mean_rewards >= env.spec.reward_threshold

    # trainer
    result = offpolicy_trainer(
        policy, train_collector, test_collector, args.epoch,
        args.step_per_epoch, args.collect_per_step, args.test_num,
        args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer,
        test_in_train=False)

    if __name__ == '__main__':
        pprint.pprint(result)
        # Let's watch its performance!
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        print(f'Final reward: {result["rew"]}, length: {result["len"]}')
Exemplo n.º 5
0
def test_sac(args=get_args()):
    env = gym.make(args.task)
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    args.max_action = env.action_space.high[0]
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    print("Action range:", np.min(env.action_space.low),
          np.max(env.action_space.high))
    # train_envs = gym.make(args.task)
    train_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.training_num)])
    # test_envs = gym.make(args.task)
    test_envs = SubprocVectorEnv(
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    train_envs.seed(args.seed)
    test_envs.seed(args.seed)
    # model
    net = Net(args.layer_num,
              args.state_shape,
              device=args.device,
              hidden_layer_size=args.hidden_layer_size)
    actor = ActorProb(
        net,
        args.action_shape,
        args.max_action,
        args.device,
        unbounded=True,
        hidden_layer_size=args.hidden_layer_size,
        conditioned_sigma=True,
    ).to(args.device)
    actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
    net_c1 = Net(args.layer_num,
                 args.state_shape,
                 args.action_shape,
                 concat=True,
                 device=args.device,
                 hidden_layer_size=args.hidden_layer_size)
    critic1 = Critic(net_c1,
                     args.device,
                     hidden_layer_size=args.hidden_layer_size).to(args.device)
    critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
    net_c2 = Net(args.layer_num,
                 args.state_shape,
                 args.action_shape,
                 concat=True,
                 device=args.device,
                 hidden_layer_size=args.hidden_layer_size)
    critic2 = Critic(net_c2,
                     args.device,
                     hidden_layer_size=args.hidden_layer_size).to(args.device)
    critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

    if args.auto_alpha:
        target_entropy = -np.prod(env.action_space.shape)
        log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
        alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
        args.alpha = (target_entropy, log_alpha, alpha_optim)

    policy = SACPolicy(
        actor,
        actor_optim,
        critic1,
        critic1_optim,
        critic2,
        critic2_optim,
        action_range=[env.action_space.low[0], env.action_space.high[0]],
        tau=args.tau,
        gamma=args.gamma,
        alpha=args.alpha,
        estimation_step=args.n_step)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(
            torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)

    # collector
    train_collector = Collector(policy, train_envs,
                                ReplayBuffer(args.buffer_size))
    test_collector = Collector(policy, test_envs)
    # log
    log_path = os.path.join(args.logdir, args.task, 'sac')
    writer = SummaryWriter(log_path)

    def watch():
        # watch agent's performance
        print("Testing agent ...")
        policy.eval()
        test_envs.seed(args.seed)
        test_collector.reset()
        result = test_collector.collect(n_episode=[1] * args.test_num,
                                        render=args.render)
        pprint.pprint(result)

    def save_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

    def stop_fn(mean_rewards):
        return False

    if args.watch:
        watch()
        exit(0)

    # trainer
    train_collector.collect(n_step=args.pre_collect_step, random=True)
    result = offpolicy_trainer(policy,
                               train_collector,
                               test_collector,
                               args.epoch,
                               args.step_per_epoch,
                               args.collect_per_step,
                               args.test_num,
                               args.batch_size,
                               args.update_per_step,
                               stop_fn=stop_fn,
                               save_fn=save_fn,
                               writer=writer,
                               log_interval=args.log_interval)
    pprint.pprint(result)
    watch()