Exemplo n.º 1
0
def tissue_mask(wsi_input, output_path, method, resolution, units, kernel_size,
                mode, file_types):
    """Generate tissue mask for a WSI."""

    file_types = tuple(file_types.split(", "))
    output_path = pathlib.Path(output_path)
    if os.path.isdir(wsi_input):
        files_all = utils.misc.grab_files_from_dir(input_path=wsi_input,
                                                   file_types=file_types)
    elif os.path.isfile(wsi_input):
        files_all = [
            wsi_input,
        ]
    else:
        raise FileNotFoundError

    if mode == "save" and not output_path.is_dir():
        os.makedirs(output_path)

    if method == "Otsu":
        masker = tissuemask.OtsuTissueMasker()
    elif method == "Morphological":
        if not kernel_size:
            if units == "mpp":
                masker = tissuemask.MorphologicalMasker(mpp=resolution)
            elif units == "power":
                masker = tissuemask.MorphologicalMasker(power=resolution)
            else:
                raise MethodNotSupported(
                    "Specified units not supported for tissue masking.")
        else:
            masker = tissuemask.MorphologicalMasker(kernel_size=kernel_size)
    else:
        raise MethodNotSupported

    for curr_file in files_all:
        wsi = wsicore.wsireader.get_wsireader(input_img=curr_file)
        wsi_thumb = wsi.slide_thumbnail(resolution=1.25, units="power")
        mask = masker.fit_transform(wsi_thumb[np.newaxis, :])

        if mode == "show":
            im_region = Image.fromarray(mask[0])
            im_region.show()

        if mode == "save":
            utils.misc.imwrite(
                output_path.joinpath(pathlib.Path(curr_file).stem + ".png"),
                mask[0].astype(np.uint8) * 255,
            )
Exemplo n.º 2
0
def test_morphological_min_region_size():
    """Test morphological masker with min_region_size set.

    Creates a test image (0=foreground, 1=background) and applies the
    morphological masker with min_region_size=6. This should output
    only the largest square region as foreground in the mask
    (0=background, 1=foreground).
    """

    # Create a blank image of 1s
    img = np.ones((10, 10))
    # Create a large square region of 9 zeros
    img[1:4, 1:4] = 0
    # Create a row of 5 zeros
    img[1, 5:10] = 0
    # Create a single 0
    img[8, 8] = 0

    masker = tissuemask.MorphologicalMasker(kernel_size=1, min_region_size=6)
    output = masker.fit_transform([img[..., np.newaxis]])
    assert np.sum(output[0]) == 9

    # Create the expected output with jsut the large square region
    # but as ones against zeros (the mask is the inverse of the input).
    expected = np.zeros((10, 10))
    expected[1:4, 1:4] = 1

    assert np.all(output[0] == expected)
Exemplo n.º 3
0
def test_morphological_masker(_sample_svs):
    """Test simple morphological thresholding."""
    wsi = wsireader.OpenSlideWSIReader(_sample_svs)
    thumb = wsi.slide_thumbnail()
    masker = tissuemask.MorphologicalMasker()
    mask_a = masker.fit_transform([thumb])[0]

    masker.fit([thumb])
    mask_b = masker.transform([thumb])[0]

    assert np.array_equal(mask_a, mask_b)
    assert masker.threshold is not None
    assert len(np.unique(mask_a)) == 2
    assert mask_a.shape == thumb.shape[:2]
Exemplo n.º 4
0
def test_morphological_greyscale_masker(_sample_svs):
    """Test morphological masker with greyscale inputs."""
    wsi = wsireader.OpenSlideWSIReader(_sample_svs)
    mpp = 32
    thumb = wsi.slide_thumbnail(mpp, "mpp")
    thumb = cv2.cvtColor(thumb, cv2.COLOR_RGB2GRAY)
    inputs = thumb[np.newaxis, ..., np.newaxis]
    masker = tissuemask.MorphologicalMasker()
    mask_a = masker.fit_transform(inputs)[0]

    masker.fit(inputs)
    mask_b = masker.transform(inputs)[0]

    assert np.array_equal(mask_a, mask_b)
    assert masker.threshold is not None
    assert len(np.unique(mask_a)) == 2
    assert mask_a.shape == thumb.shape[:2]
Exemplo n.º 5
0
def test_morphological_masker_mpp(_sample_svs):
    """Test simple morphological thresholding with mpp."""
    wsi = wsireader.OpenSlideWSIReader(_sample_svs)
    mpp = 32
    thumb = wsi.slide_thumbnail(mpp, "mpp")
    kwarg_sets = [
        dict(mpp=mpp),
        dict(mpp=[mpp, mpp]),
    ]
    for kwargs in kwarg_sets:
        masker = tissuemask.MorphologicalMasker(**kwargs)
        mask_a = masker.fit_transform([thumb])[0]

        masker.fit([thumb])
        mask_b = masker.transform([thumb])[0]

        assert np.array_equal(mask_a, mask_b)
        assert masker.threshold is not None
        assert len(np.unique(mask_a)) == 2
        assert mask_a.shape == thumb.shape[:2]
Exemplo n.º 6
0
def test_morphological_kernel_size_none():
    """Test giveing a None kernel size for morphological masker."""
    tissuemask.MorphologicalMasker(kernel_size=None)
Exemplo n.º 7
0
def test_transform_morphological_conflicting_args():
    """Test giving conflicting arguments to morphological masker."""
    with pytest.raises(ValueError):
        tissuemask.MorphologicalMasker(mpp=32, power=1.25)
Exemplo n.º 8
0
def test_transform_before_fit_morphological():
    """Test morphological masker error on transform before fit."""
    image = np.ones((1, 10, 10))
    masker = tissuemask.MorphologicalMasker()
    with pytest.raises(Exception):
        masker.transform([image])[0]