def test_step_type_setting(self): """...Test that SVRG step_type parameter behaves correctly """ svrg = SVRG() coeffs0 = weights_sparse_gauss(20, nnz=5, dtype=self.dtype) interc0 = None X, y = SimuLogReg(coeffs0, interc0, n_samples=3000, verbose=False, seed=123, dtype=self.dtype).simulate() model = ModelLogReg().fit(X, y) svrg.set_model(model) self.assertEqual(svrg.step_type, 'fixed') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed) svrg = SVRG(step_type='bb') svrg.set_model(model) self.assertEqual(svrg.step_type, 'bb') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_BarzilaiBorwein) svrg.step_type = 'fixed' self.assertEqual(svrg.step_type, 'fixed') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed) svrg.step_type = 'bb' self.assertEqual(svrg.step_type, 'bb') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_BarzilaiBorwein)
def compare_solver_sdca(self): """...Compare SDCA solution with SVRG solution """ np.random.seed(12) n_samples = Test.n_samples n_features = Test.n_features for fit_intercept in [True, False]: y, X, coeffs0, interc0 = TestSolver.generate_logistic_data( n_features, n_samples) model = ModelLogReg(fit_intercept=fit_intercept).fit(X, y) ratio = 0.5 l_enet = 1e-2 # SDCA "elastic-net" formulation is different from elastic-net # implementation l_l2_sdca = ratio * l_enet l_l1_sdca = (1 - ratio) * l_enet sdca = SDCA(l_l2sq=l_l2_sdca, max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_l1 = ProxL1(l_l1_sdca) sdca.set_prox(prox_l1) coeffs_sdca = sdca.solve() # Compare with SVRG svrg = SVRG(max_iter=100, verbose=False, tol=0, seed=Test.sto_seed).set_model(model) prox_enet = ProxElasticNet(l_enet, ratio) svrg.set_prox(prox_enet) coeffs_svrg = svrg.solve(step=0.1) np.testing.assert_allclose(coeffs_sdca, coeffs_svrg)
def test_set_model(self): """...Test SVRG set_model """ X, y = self.simu_linreg_data() _, model_spars = self.get_dense_and_sparse_linreg_model(X, y) svrg = SVRG(variance_reduction='avg') msg = "'avg' variance reduction cannot be used with sparse datasets. " \ "Please change `variance_reduction` before passing sparse data." with catch_warnings(record=True) as w: simplefilter('always') svrg.set_model(model_spars) self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[0].category, UserWarning)) self.assertEqual(str(w[0].message), msg)
def test_solver_svrg(self): """...Check SVRG solver for a Logistic Regression with Ridge penalization """ solver = SVRG(step=1e-3, max_iter=100, verbose=False, tol=0) self.check_solver(solver, fit_intercept=True, model="logreg", decimal=1)
def test_convergence_with_lags(self): """Test longitudinal multinomial model convergence.""" n_intervals = 10 n_lags = 3 n_samples = 1500 n_features = 3 sim = SimuSCCS(n_samples, n_intervals, n_features, n_lags, None, True, "short", seed=42, verbose=False) X, y, censoring, coeffs = sim.simulate() X = LongitudinalFeaturesLagger(n_lags=n_lags) \ .fit_transform(X, censoring) model = ModelSCCS(n_intervals=n_intervals, n_lags=n_lags).fit(X, y, censoring) solver = SVRG(max_iter=15, verbose=False) solver.set_model(model).set_prox(ProxZero()) coeffs_svrg = solver.solve(step=1 / model.get_lip_max()) np.testing.assert_almost_equal(coeffs, coeffs_svrg, decimal=1)
def test_dense_and_sparse_match(self): """...Test in SVRG that dense and sparse code matches in all possible settings """ variance_reductions = ['last', 'rand'] rand_types = ['perm', 'unif'] seed = 123 tol = 0. max_iter = 50 n_samples = 500 n_features = 20 # Crazy prox examples proxs = [ ProxTV(strength=1e-2, range=(5, 13), positive=True), ProxElasticNet(strength=1e-2, ratio=0.9), ProxEquality(range=(0, n_features)), ProxL1(strength=1e-3, range=(5, 17)), ProxL1w(strength=1e-3, weights=np.arange(5, 17, dtype=np.double), range=(5, 17)), ] for intercept in [-1, None]: X, y = self.simu_linreg_data(interc=intercept, n_features=n_features, n_samples=n_samples) fit_intercept = intercept is not None model_dense, model_spars = self.get_dense_and_sparse_linreg_model( X, y, fit_intercept=fit_intercept) step = 1 / model_spars.get_lip_max() for variance_reduction, rand_type, prox in product( variance_reductions, rand_types, proxs): solver_sparse = SVRG(step=step, tol=tol, max_iter=max_iter, verbose=False, variance_reduction=variance_reduction, rand_type=rand_type, seed=seed) \ .set_model(model_spars) \ .set_prox(prox) solver_dense = SVRG(step=step, tol=tol, max_iter=max_iter, verbose=False, variance_reduction=variance_reduction, rand_type=rand_type, seed=seed) \ .set_model(model_dense) \ .set_prox(prox) solver_sparse.solve() solver_dense.solve() np.testing.assert_array_almost_equal(solver_sparse.solution, solver_dense.solution, 7)
def _construct_solver_obj(step, max_iter, tol, print_every, record_every, verbose, seed): # TODO: we might want to use SAGA also later... (might be faster here) # seed cannot be None in SVRG solver_obj = SVRG(step=step, max_iter=max_iter, tol=tol, print_every=print_every, record_every=record_every, verbose=verbose, seed=seed) return solver_obj
def test_convergence_with_lags(self): """Test longitudinal multinomial model convergence.""" n_intervals = 10 n_samples = 800 n_features = 2 n_lags = np.repeat(2, n_features).astype(dtype="uint64") sim = SimuSCCS(n_samples, n_intervals, n_features, n_lags, None, "multiple_exposures", seed=42) _, X, y, censoring, coeffs = sim.simulate() coeffs = np.hstack(coeffs) X, _, _ = LongitudinalFeaturesLagger(n_lags=n_lags) \ .fit_transform(X, censoring) model = ModelSCCS(n_intervals=n_intervals, n_lags=n_lags).fit(X, y, censoring) solver = SVRG(max_iter=15, verbose=False) solver.set_model(model).set_prox(ProxZero()) coeffs_svrg = solver.solve(step=1 / model.get_lip_max()) np.testing.assert_almost_equal(coeffs, coeffs_svrg, decimal=1)
def test_sdca_identity_poisreg(self): """...Test SDCA on specific case of Poisson regression with indentity link """ l_l2sq = 1e-3 n_samples = 10000 n_features = 3 np.random.seed(123) weight0 = np.random.rand(n_features) features = np.random.rand(n_samples, n_features) for intercept in [None, 0.45]: if intercept is None: fit_intercept = False else: fit_intercept = True simu = SimuPoisReg(weight0, intercept=intercept, features=features, n_samples=n_samples, link='identity', verbose=False) features, labels = simu.simulate() model = ModelPoisReg(fit_intercept=fit_intercept, link='identity') model.fit(features, labels) sdca = SDCA(l_l2sq=l_l2sq, max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) sdca.set_model(model).set_prox(ProxZero()) start_dual = np.sqrt(sdca._rand_max * l_l2sq) start_dual = start_dual * np.ones(sdca._rand_max) sdca.solve(start_dual) # Check that duality gap is 0 self.assertAlmostEqual( sdca.objective(sdca.solution), sdca.dual_objective(sdca.dual_solution)) # Check that original vector is approximatively retrieved if fit_intercept: original_coeffs = np.hstack((weight0, intercept)) else: original_coeffs = weight0 np.testing.assert_array_almost_equal(original_coeffs, sdca.solution, decimal=1) # Ensure that we solve the same problem as other solvers svrg = SVRG(max_iter=100, verbose=False, tol=1e-14, seed=Test.sto_seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.solve(0.5 * np.ones(model.n_coeffs), step=1e-2) np.testing.assert_array_almost_equal(svrg.solution, sdca.solution, decimal=4)
def _construct_solver_obj_with_class(step, max_iter, tol, print_every, record_every, verbose, seed, clazz=SVRG): """All creatioon of solver by class type, removes values from constructor parameter list that do not exist on the class construct to be called """ # inspect must be first assign _, _, _, kvs = inspect.getargvalues(inspect.currentframe()) constructor_map = kvs.copy() args = inspect.getfullargspec(clazz.__init__)[0] for k, v in kvs.items(): if k not in args: del constructor_map[k] return SVRG(**constructor_map)
def run_solvers(model, l_l2sq): try: svrg_step = 1. / model.get_lip_max() except AttributeError: svrg_step = 1e-3 try: gd_step = 1. / model.get_lip_best() except AttributeError: gd_step = 1e-1 bfgs = BFGS(verbose=False, tol=1e-13) bfgs.set_model(model).set_prox(ProxL2Sq(l_l2sq)) bfgs.solve() bfgs.history.set_minimizer(bfgs.solution) bfgs.history.set_minimum(bfgs.objective(bfgs.solution)) bfgs.solve() svrg = SVRG(step=svrg_step, verbose=False, tol=1e-10, seed=seed) svrg.set_model(model).set_prox(ProxL2Sq(l_l2sq)) svrg.history.set_minimizer(bfgs.solution) svrg.history.set_minimum(bfgs.objective(bfgs.solution)) svrg.solve() sdca = SDCA(l_l2sq, verbose=False, seed=seed, tol=1e-10) sdca.set_model(model).set_prox(ProxZero()) sdca.history.set_minimizer(bfgs.solution) sdca.history.set_minimum(bfgs.objective(bfgs.solution)) sdca.solve() gd = GD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) gd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) gd.history.set_minimizer(bfgs.solution) gd.history.set_minimum(bfgs.objective(bfgs.solution)) gd.solve() agd = AGD(verbose=False, tol=1e-10, step=gd_step, linesearch=False) agd.set_model(model).set_prox(ProxL2Sq(l_l2sq)) agd.history.set_minimizer(bfgs.solution) agd.history.set_minimum(bfgs.objective(bfgs.solution)) agd.solve() return bfgs, svrg, sdca, gd, agd
def test_step_type_setting(self): """...Test that SVRG step_type parameter behaves correctly """ svrg = SVRG() self.assertEqual(svrg.step_type, 'fixed') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed) svrg = SVRG(step_type='bb') self.assertEqual(svrg.step_type, 'bb') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_BarzilaiBorwein) svrg.step_type = 'fixed' self.assertEqual(svrg.step_type, 'fixed') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_Fixed) svrg.step_type = 'bb' self.assertEqual(svrg.step_type, 'bb') self.assertEqual(svrg._solver.get_step_type(), SVRG_StepType_BarzilaiBorwein)
simulator = SimuLogReg(weights, n_samples=n_samples, features=features, verbose=False, intercept=intercept) features, labels = simulator.simulate() model = ModelLogReg(fit_intercept=True) model.fit(features, labels) prox = ProxElasticNet(penalty_strength, ratio=0.5, range=(0, n_features)) svrg_step = 1. / model.get_lip_max() test_n_threads = [1, 2, 4] svrg_list = [] svrg_labels = [] for n_threads in test_n_threads: svrg = SVRG(step=svrg_step, seed=seed, max_iter=30, verbose=False, n_threads=n_threads) svrg.set_model(model).set_prox(prox) svrg.solve() svrg_list += [svrg] if n_threads == 1: svrg_labels += ['SVRG'] else: svrg_labels += ['ASVRG {}'.format(n_threads)] plot_history(svrg_list, x="time", dist_min=True, log_scale=True, labels=svrg_labels, show=False) plt.ylim([3e-3, 0.3]) plt.ylabel('log distance to optimal objective', fontsize=14) plt.tight_layout() plt.show()
from tick.prox import ProxElasticNet, ProxL1 from tick.plot import plot_history n_samples, n_features, = 5000, 50 weights0 = weights_sparse_gauss(n_features, nnz=10) intercept0 = 0.2 X, y = SimuLogReg(weights=weights0, intercept=intercept0, n_samples=n_samples, seed=123, verbose=False).simulate() model = ModelLogReg(fit_intercept=True).fit(X, y) prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features)) solver_params = {'max_iter': 100, 'tol': 0., 'verbose': False} x0 = np.zeros(model.n_coeffs) gd = GD(linesearch=False, **solver_params).set_model(model).set_prox(prox) gd.solve(x0, step=1 / model.get_lip_best()) agd = AGD(linesearch=False, **solver_params).set_model(model).set_prox(prox) agd.solve(x0, step=1 / model.get_lip_best()) sgd = SGD(**solver_params).set_model(model).set_prox(prox) sgd.solve(x0, step=500.) svrg = SVRG(**solver_params).set_model(model).set_prox(prox) svrg.solve(x0, step=1 / model.get_lip_max()) plot_history([gd, agd, sgd, svrg], log_scale=True, dist_min=True)
def create_solver(): return SVRG(tol=1e-13, step=0.1, max_iter=1000, seed=TestSolver.sto_seed, verbose=False)
intercept0 = 0.2 X, y = SimuLogReg(weights=weights0, intercept=intercept0, n_samples=n_samples, seed=123, verbose=False).simulate() model = ModelLogReg(fit_intercept=True).fit(X, y) prox = ProxElasticNet(strength=1e-3, ratio=0.5, range=(0, n_features)) x0 = np.zeros(model.n_coeffs) optimal_step = 1 / model.get_lip_max() tested_steps = [optimal_step, 1e-2 * optimal_step, 10 * optimal_step] solvers = [] solver_labels = [] for step in tested_steps: svrg = SVRG(max_iter=30, tol=1e-10, verbose=False) svrg.set_model(model).set_prox(prox) svrg.solve(step=step) svrg_bb = SVRG(max_iter=30, tol=1e-10, verbose=False, step_type='bb') svrg_bb.set_model(model).set_prox(prox) svrg_bb.solve(step=step) solvers += [svrg, svrg_bb] optimal_factor = step / optimal_step if optimal_factor != 1: solver_labels += ['SVRG {:.2g} * optimal step'.format(optimal_factor), 'SVRG BB {:.2g} * optimal step'.format(optimal_factor)] else: solver_labels += ['SVRG optimal step'.format(optimal_factor),
def create_solver(): return SVRG(max_iter=1, verbose=False, step=1e-5, seed=TestSolver.sto_seed)
def __init__(self, **kwargs): TS.__init__(self, **kwargs) SOLVER.__init__(self, **kwargs) object.__setattr__(self, "_s_name", "svrg")
def test_variance_reduction_setting(self): """...Test that SVRG variance_reduction parameter behaves correctly """ svrg = SVRG() coeffs0 = weights_sparse_gauss(20, nnz=5, dtype=self.dtype) interc0 = None X, y = SimuLogReg(coeffs0, interc0, n_samples=3000, verbose=False, seed=123, dtype=self.dtype).simulate() model = ModelLogReg().fit(X, y) svrg.set_model(model) self.assertEqual(svrg.variance_reduction, 'last') self.assertEqual(svrg._solver.get_variance_reduction(), SVRG_VarianceReductionMethod_Last) svrg = SVRG(variance_reduction='rand') svrg.set_model(model) self.assertEqual(svrg.variance_reduction, 'rand') self.assertEqual(svrg._solver.get_variance_reduction(), SVRG_VarianceReductionMethod_Random) svrg.variance_reduction = 'avg' self.assertEqual(svrg.variance_reduction, 'avg') self.assertEqual(svrg._solver.get_variance_reduction(), SVRG_VarianceReductionMethod_Average) svrg.variance_reduction = 'rand' self.assertEqual(svrg.variance_reduction, 'rand') self.assertEqual(svrg._solver.get_variance_reduction(), SVRG_VarianceReductionMethod_Random) svrg.variance_reduction = 'last' self.assertEqual(svrg.variance_reduction, 'last') self.assertEqual(svrg._solver.get_variance_reduction(), SVRG_VarianceReductionMethod_Last) msg = '^variance_reduction should be one of "avg, last, rand", ' \ 'got "stuff"$' with self.assertRaisesRegex(ValueError, msg): svrg = SVRG(variance_reduction='stuff') svrg.set_model(model) with self.assertRaisesRegex(ValueError, msg): svrg.variance_reduction = 'stuff' X, y = self.simu_linreg_data(dtype=self.dtype) model_dense, model_spars = self.get_dense_and_sparse_linreg_model( X, y, dtype=self.dtype) try: svrg.set_model(model_dense) svrg.variance_reduction = 'avg' svrg.variance_reduction = 'last' svrg.variance_reduction = 'rand' svrg.set_model(model_spars) svrg.variance_reduction = 'last' svrg.variance_reduction = 'rand' except Exception: self.fail('Setting variance_reduction in these cases should have ' 'been ok') msg = "'avg' variance reduction cannot be used with sparse datasets" with catch_warnings(record=True) as w: simplefilter('always') svrg.set_model(model_spars) svrg.variance_reduction = 'avg' self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[0].category, UserWarning)) self.assertEqual(str(w[0].message), msg)
def test_serializing_solvers(self): """...Test serialization of solvers """ ratio = 0.5 l_enet = 1e-2 sd = ratio * l_enet solvers = [ AdaGrad(step=1e-3, max_iter=100, verbose=False, tol=0), SGD(step=1e-3, max_iter=100, verbose=False, tol=0), SDCA(l_l2sq=sd, max_iter=100, verbose=False, tol=0), SAGA(step=1e-3, max_iter=100, verbose=False, tol=0), SVRG(step=1e-3, max_iter=100, verbose=False, tol=0) ] model_map = { ModelLinReg: SimuLinReg, ModelLogReg: SimuLogReg, ModelPoisReg: SimuPoisReg, ModelHinge: SimuLogReg, ModelQuadraticHinge: SimuLogReg, ModelSmoothedHinge: SimuLogReg, ModelAbsoluteRegression: SimuLinReg, ModelEpsilonInsensitive: SimuLinReg, ModelHuber: SimuLinReg, ModelLinRegWithIntercepts: SimuLinReg, ModelModifiedHuber: SimuLogReg } for solver in solvers: for mod in model_map: np.random.seed(12) n_samples, n_features = 100, 5 w0 = np.random.randn(n_features) intercept0 = 50 * weights_sparse_gauss(n_weights=n_samples, nnz=30) c0 = None X, y = SimuLinReg(w0, c0, n_samples=n_samples, verbose=False, seed=2038).simulate() if mod == ModelLinRegWithIntercepts: y += intercept0 model = mod(fit_intercept=False).fit(X, y) prox = ProxL1(2.) solver.set_model(model) solver.set_prox(prox) pickled = pickle.loads(pickle.dumps(solver)) self.assertTrue(solver._solver.compare(pickled._solver)) self.assertTrue( solver.model._model.compare(pickled.model._model)) self.assertTrue(solver.prox._prox.compare(pickled.prox._prox)) if mod == ModelLinRegWithIntercepts: test_vector = np.hstack((X[0], np.ones(n_samples))) self.assertEqual(model.loss(test_vector), solver.model.loss(test_vector)) else: self.assertEqual(model.loss(X[0]), solver.model.loss(X[0]))
def test_variance_reduction_setting(self): """...Test that SVRG variance_reduction parameter behaves correctly """ svrg = SVRG() self.assertEqual(svrg.variance_reduction, 'last') self.assertEqual(svrg._solver.get_variance_reduction(), _SVRG.VarianceReductionMethod_Last) svrg = SVRG(variance_reduction='rand') self.assertEqual(svrg.variance_reduction, 'rand') self.assertEqual(svrg._solver.get_variance_reduction(), _SVRG.VarianceReductionMethod_Random) svrg.variance_reduction = 'avg' self.assertEqual(svrg.variance_reduction, 'avg') self.assertEqual(svrg._solver.get_variance_reduction(), _SVRG.VarianceReductionMethod_Average) svrg.variance_reduction = 'rand' self.assertEqual(svrg.variance_reduction, 'rand') self.assertEqual(svrg._solver.get_variance_reduction(), _SVRG.VarianceReductionMethod_Random) svrg.variance_reduction = 'last' self.assertEqual(svrg.variance_reduction, 'last') self.assertEqual(svrg._solver.get_variance_reduction(), _SVRG.VarianceReductionMethod_Last) msg = '^variance_reduction should be one of "avg, last, rand", ' \ 'got "stuff"$' with self.assertRaisesRegex(ValueError, msg): svrg = SVRG(variance_reduction='stuff') with self.assertRaisesRegex(ValueError, msg): svrg.variance_reduction = 'stuff' X, y = self.simu_linreg_data() model_dense, model_spars = self.get_dense_and_sparse_linreg_model(X, y) try: svrg.set_model(model_dense) svrg.variance_reduction = 'avg' svrg.variance_reduction = 'last' svrg.variance_reduction = 'rand' svrg.set_model(model_spars) svrg.variance_reduction = 'last' svrg.variance_reduction = 'rand' except Exception: self.fail('Setting variance_reduction in these cases should have ' 'been ok') msg = "'avg' variance reduction cannot be used with sparse datasets" with catch_warnings(record=True) as w: simplefilter('always') svrg.set_model(model_spars) svrg.variance_reduction = 'avg' self.assertEqual(len(w), 1) self.assertTrue(issubclass(w[0].category, UserWarning)) self.assertEqual(str(w[0].message), msg)