def save_favlist( org ): T = ticker() pickle_file = 'pickle/ticker.cpickle2' with open(pickle_file, 'rb') as f: t = cPickle.load(f) favlist = [] for x in org: if t['DB'].has_key( x[0] ) is True: if x[1] == None: year = int(time.strftime('%Y')) month = int(time.strftime('%m')) day = int(time.strftime('%d')) x[1] = "%d-%2.2d-%2.2d" % (year, month, day ) if len(x[1]) == 10: (price, last_price) = T.get_price_by_date( x[0], x[1]) else: price = 0 favlist.append( x[0:4] + [price] ) with open( dbfile, 'wb') as f: cPickle.dump( favlist, f ) get_favlist()
def main(gsidval): ticker_url = "https://api.marquee.gs.com/v1/assets/data/query" gsid_url = "https://api.marquee.gs.com/v1/data/USCANFPP_MINI/query" company_id = ticker(gsidval, ticker_url) # company_id = [company, gsid, ticker] #data = gsid(gsidval, gsid_url) # data = [growthScore, financialReturnsScore, multipleScore, integratedScore ] gsid_dataframe = gsid( gsidval, gsid_url) # dataframe with gsid data (4 things, + date) return company_id, gsid_dataframe
def ac_analysis(circ, start, points, stop, sweep_type, x0=None, mna=None, AC=None, Nac=None, J=None, outfile="stdout", verbose=3): """Performs an AC analysis of the circuit described by circ. Parameters: start (float): the start angular frequency for the AC analysis stop (float): stop angular frequency points (float): the number of points to be use the discretize the [start, stop] interval. sweep_type (string): Either 'LOG' or 'LINEAR', defaults to 'LOG'. outfile (string): the filename of the output file where the results will be written. '.ac' is automatically added at the end to prevent different analyses from overwriting each-other's results. If unset or set to None, defaults to stdout. verbose (int): the verbosity level, from 0 (silent) to 6 (debug). Returns: an AC results object """ if outfile == 'stdout': verbose = 0 # check step/start/stop parameters nsteps = points - 1 if start == 0: printing.print_general_error("AC analysis has start frequency = 0") sys.exit(5) if start > stop: printing.print_general_error("AC analysis has start > stop") sys.exit(1) if nsteps < 1: printing.print_general_error("AC analysis has number of steps <= 1") sys.exit(1) if sweep_type == options.ac_log_step: omega_iter = utilities.log_axis_iterator(stop, start, nsteps) elif sweep_type == options.ac_lin_step: omega_iter = utilities.lin_axis_iterator(stop, start, nsteps) else: printing.print_general_error("Unknown sweep type.") sys.exit(1) tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \ options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter printing.print_info_line((tmpstr, 5), verbose) del tmpstr printing.print_info_line(("Starting AC analysis: ", 1), verbose) tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps) printing.print_info_line((tmpstr, 3), verbose) del tmpstr # It's a good idea to call AC with prebuilt MNA matrix if the circuit is # big if mna is None: (mna, N) = dc_analysis.generate_mna_and_N(circ, verbose=verbose) del N mna = utilities.remove_row_and_col(mna) if Nac is None: Nac = generate_Nac(circ) Nac = utilities.remove_row(Nac, rrow=0) if AC is None: AC = generate_AC(circ, [mna.shape[0], mna.shape[0]]) AC = utilities.remove_row_and_col(AC) if circ.is_nonlinear(): if J is not None: pass # we used the supplied linearization matrix else: if x0 is None: printing.print_info_line( ("Starting OP analysis to get a linearization point...", 3), verbose, print_nl=False) # silent OP x0 = dc_analysis.op_analysis(circ, verbose=0) if x0 is None: # still! Then op_analysis has failed! printing.print_info_line(("failed.", 3), verbose) printing.print_general_error( "OP analysis failed, no linearization point available. Quitting.") sys.exit(3) else: printing.print_info_line(("done.", 3), verbose) printing.print_info_line( ("Linearization point (xop):", 5), verbose) if verbose > 4: x0.print_short() printing.print_info_line( ("Linearizing the circuit...", 5), verbose, print_nl=False) J = generate_J(xop=x0.asmatrix(), circ=circ, mna=mna, Nac=Nac, data_filename=outfile, verbose=verbose) printing.print_info_line((" done.", 5), verbose) # we have J, continue else: # not circ.is_nonlinear() # no J matrix is required. J = 0 printing.print_info_line(("MNA (reduced):", 5), verbose) printing.print_info_line((str(mna), 5), verbose) printing.print_info_line(("AC (reduced):", 5), verbose) printing.print_info_line((str(AC), 5), verbose) printing.print_info_line(("J (reduced):", 5), verbose) printing.print_info_line((str(J), 5), verbose) printing.print_info_line(("Nac (reduced):", 5), verbose) printing.print_info_line((str(Nac), 5), verbose) sol = results.ac_solution(circ, ostart=start, ostop=stop, opoints=nsteps, stype=sweep_type, op=x0, outfile=outfile) # setup the initial values to start the iteration: nv = len(circ.nodes_dict) j = numpy.complex('j') Gmin_matrix = dc_analysis.build_gmin_matrix( circ, options.gmin, mna.shape[0], verbose) iter_n = 0 # contatore d'iterazione printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(increments_for_step=1) tick.display(verbose > 1) x = x0 for omega in omega_iter: (x, error, solved, n_iter) = dc_analysis.dc_solve( mna=(mna + numpy.multiply(j * omega, AC) + J), Ndc = Nac, Ntran = 0, circ = circuit.Circuit( title="Dummy circuit for AC", filename=None), Gmin = Gmin_matrix, x0 = x, time = None, locked_nodes = None, MAXIT = options.ac_max_nr_iter, skip_Tt = True, verbose = 0) if solved: tick.step(verbose > 1) iter_n = iter_n + 1 # hooray! sol.add_line(omega, x) else: break tick.hide(verbose > 1) if solved: printing.print_info_line(("done.", 1), verbose) ret_value = sol else: printing.print_info_line(("failed.", 1), verbose) ret_value = None return ret_value
def bfpss(circ, period, step=None, mna=None, Tf=None, D=None, points=None, autonomous=False, x0=None, data_filename='stdout', vector_norm=lambda v: max(abs(v)), verbose=3): """Performs a PSS analysis. Time step is constant, IE will be used as DF Parameters: circ is the circuit description class period is the period of the solution mna, D, Tf are not compulsory they will be computed if they're set to None step is the time step between consecutive points points is the number of points to be used step and points are mutually exclusive options: - if step is specified, the number of points will be automatically determined - if points is set, the step will be automatically determined - if none of them is set, options.shooting_default_points will be used as points autonomous has to be False, autonomous circuits are not supported x0 is the initial guess to be used. Needs work. data_filename is the output filename. Defaults to stdout. verbose is set to zero (print errors only) if datafilename == 'stdout'. Returns: nothing """ if data_filename == "stdout": verbose = 0 printing.print_info_line(("Starting periodic steady state analysis:",3), verbose) printing.print_info_line(("Method: brute-force",3), verbose) if mna is None or Tf is None: (mna, Tf) = dc_analysis.generate_mna_and_N(circ) mna = utilities.remove_row_and_col(mna) Tf = utilities.remove_row(Tf, rrow=0) elif not mna.shape[0] == Tf.shape[0]: printing.print_general_error("mna matrix and N vector have different number of rows.") sys.exit(0) if D is None: D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) elif not mna.shape == D.shape: printing.print_general_error("mna matrix and D matrix have different sizes.") sys.exit(0) (points, step) = check_step_and_points(step, points, period) n_of_var = mna.shape[0] locked_nodes = circ.get_locked_nodes() tick = ticker.ticker(increments_for_step=1) CMAT = build_CMAT(mna, D, step, points, tick, n_of_var=n_of_var, \ verbose=verbose) x = build_x(mna, step, points, tick, x0=x0, n_of_var=n_of_var, \ verbose=verbose) Tf = build_Tf(Tf, points, tick, n_of_var=n_of_var, verbose=verbose) # time variable component: Tt this is always the same in each iter. So we build it once for all # this holds all time-dependent sources (both V/I). Tt = build_Tt(circ, points, step, tick, n_of_var=n_of_var, verbose=verbose) # Indices to differentiate between currents and voltages in the convergence check nv_indices = [] ni_indices = [] nv_1 = len(circ.nodes_dict) - 1 ni = n_of_var - nv_1 for i in range(points): nv_indices += (i*mna.shape[0]*numpy.ones(nv_1) + numpy.arange(nv_1)).tolist() ni_indices += (i*mna.shape[0]*numpy.ones(ni) + numpy.arange(nv_1, n_of_var)).tolist() converged = False printing.print_info_line(("Solving... ",3), verbose, print_nl=False) tick.reset() tick.display(verbose > 2) J = numpy.mat(numpy.zeros(CMAT.shape)) T = numpy.mat(numpy.zeros((CMAT.shape[0], 1))) # td is a numpy matrix that will hold the damping factors td = numpy.mat(numpy.zeros((points, 1))) iteration = 0 # newton iteration counter while True: if iteration: # the first time are already all zeros J[:, :] = 0 T[:, 0] = 0 td[:, 0] = 0 for index in xrange(1, points): for elem in circ.elements: # build all dT(xn)/dxn (stored in J) and T(x) if elem.is_nonlinear: oports = elem.get_output_ports() for opindex in range(len(oports)): dports = elem.get_drive_ports(opindex) v_ports = [] for dpindex in range(len(dports)): dn1, dn2 = dports[dpindex] v = 0 # build v: remember we trashed the 0 row and 0 col of mna -> -1 if dn1: v = v + x[index*n_of_var + dn1 - 1, 0] if dn2: v = v - x[index*n_of_var + dn2 - 1, 0] v_ports.append(v) # all drive ports are ready. n1, n2 = oports[opindex][0], oports[opindex][1] if n1: T[index*n_of_var + n1 - 1, 0] = T[index*n_of_var + n1 - 1, 0] + elem.i(opindex, v_ports) if n2: T[index*n_of_var + n2 - 1, 0] = T[index*n_of_var + n2 - 1, 0] - elem.i(opindex, v_ports) for dpindex in range(len(dports)): dn1, dn2 = dports[dpindex] if n1: if dn1: J[index*n_of_var + n1-1, index*n_of_var + dn1-1] = \ J[index*n_of_var + n1-1, index*n_of_var + dn1-1] + elem.g(opindex, v_ports, dpindex) if dn2: J[index*n_of_var + n1-1, index*n_of_var + dn2-1] =\ J[index*n_of_var + n1-1, index * n_of_var + dn2-1] - 1.0*elem.g(opindex, v_ports, dpindex) if n2: if dn1: J[index*n_of_var + n2-1, index*n_of_var + dn1-1] = \ J[index*n_of_var + n2-1, index*n_of_var + dn1-1] - 1.0*elem.g(opindex, v_ports, dpindex) if dn2: J[index*n_of_var + n2-1, index*n_of_var + dn2-1] =\ J[index*n_of_var + n2-1, index*n_of_var + dn2-1] + elem.g(opindex, v_ports, dpindex) J = J + CMAT residuo = CMAT*x + T + Tf + Tt dx = -1 * (numpy.linalg.inv(J) * residuo) #td for index in xrange(points): td[index, 0] = dc_analysis.get_td(dx[index*n_of_var:(index+1)*n_of_var, 0], locked_nodes, n=-1) x = x + min(abs(td))[0, 0] * dx # convergence check converged = convergence_check(dx, x, nv_indices, ni_indices, vector_norm) if converged: break tick.step(verbose > 2) if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter: printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.") converged = False break else: iteration = iteration + 1 tick.hide(verbose > 2) if converged: printing.print_info_line(("done.", 3), verbose) t = numpy.mat(numpy.arange(points)*step) t = t.reshape((1, points)) x = x.reshape((points, n_of_var)) sol = results.pss_solution(circ=circ, method="brute-force", period=period, outfile=data_filename, t_array=t, x_array=x.T) else: print "failed." sol = None return sol
def transient_analysis(circ, tstart, tstep, tstop, method=TRAP, x0=None, mna=None, N=None, \ D=None, data_filename="stdout", use_step_control=True, return_req_dict=None, verbose=3): """Performs a transient analysis of the circuit described by circ. Important parameters: - tstep is the maximum step to be allowed during simulation. - print_step_and_lte is a boolean value. Is set to true, the step and the LTE of the first element of x will be printed out to step_and_lte.graph in the current directory. """ if data_filename == "stdout": verbose = 0 _debug = False if _debug: print_step_and_lte = True else: print_step_and_lte = False HMAX = tstep #check parameters if tstart > tstop: printing.print_general_error("tstart > tstop") sys.exit(1) if tstep < 0: printing.print_general_error("tstep < 0") sys.exit(1) if verbose > 4: tmpstr = "Vea = %g Ver = %g Iea = %g Ier = %g max_time_iter = %g HMIN = %g" % \ (options.vea, options.ver, options.iea, options.ier, options.transient_max_time_iter, options.hmin) printing.print_info_line((tmpstr, 5), verbose) locked_nodes = circ.get_locked_nodes() if print_step_and_lte: flte = open("step_and_lte.graph", "w") flte.write("#T\tStep\tLTE\n") printing.print_info_line(("Starting transient analysis: ", 3), verbose) printing.print_info_line(("Selected method: %s" % (method, ), 3), verbose) #It's a good idea to call transient with prebuilt MNA and N matrix #the analysis will be slightly faster (long netlists). if mna is None or N is None: (mna, N) = dc_analysis.generate_mna_and_N(circ) mna = utilities.remove_row_and_col(mna) N = utilities.remove_row(N, rrow=0) elif not mna.shape[0] == N.shape[0]: printing.print_general_error( "mna matrix and N vector have different number of columns.") sys.exit(0) if D is None: # if you do more than one tran analysis, output streams should be changed... # this needs to be fixed D = generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) # setup x0 if x0 is None: printing.print_info_line(("Generating x(t=%g) = 0" % (tstart, ), 5), verbose) x0 = numpy.matrix(numpy.zeros((mna.shape[0], 1))) opsol = results.op_solution(x=x0, error=x0, circ=circ, outfile=None) else: if isinstance(x0, results.op_solution): opsol = x0 x0 = x0.asmatrix() else: opsol = results.op_solution(x=x0, error=numpy.matrix( numpy.zeros((mna.shape[0], 1))), circ=circ, outfile=None) printing.print_info_line( ("Using the supplied op as x(t=%g)." % (tstart, ), 5), verbose) if verbose > 4: print "x0:" opsol.print_short() # setup the df method printing.print_info_line( ("Selecting the appropriate DF (" + method + ")... ", 5), verbose, print_nl=False) if method == IMPLICIT_EULER: import implicit_euler as df elif method == TRAP: import trap as df elif method == GEAR1: import gear as df df.order = 1 elif method == GEAR2: import gear as df df.order = 2 elif method == GEAR3: import gear as df df.order = 3 elif method == GEAR4: import gear as df df.order = 4 elif method == GEAR5: import gear as df df.order = 5 elif method == GEAR6: import gear as df df.order = 6 else: df = import_custom_df_module(method, print_out=(data_filename != "stdout")) # df is none if module is not found if df is None: sys.exit(23) if not df.has_ff() and use_step_control: printing.print_warning( "The chosen DF does not support step control. Turning off the feature." ) use_step_control = False #use_aposteriori_step_control = False printing.print_info_line(("done.", 5), verbose) # setup the data buffer # if you use the step control, the buffer has to be one point longer. # That's because the excess point is used by a FF in the df module to predict the next value. printing.print_info_line(("Setting up the buffer... ", 5), verbose, print_nl=False) ((max_x, max_dx), (pmax_x, pmax_dx)) = df.get_required_values() if max_x is None and max_dx is None: printing.print_general_error("df doesn't need any value?") sys.exit(1) if use_step_control: thebuffer = dfbuffer(length=max(max_x, max_dx, pmax_x, pmax_dx) + 1, width=3) else: thebuffer = dfbuffer(length=max(max_x, max_dx) + 1, width=3) thebuffer.add((tstart, x0, None)) #setup the first values printing.print_info_line(("done.", 5), verbose) #FIXME #setup the output buffer if return_req_dict: output_buffer = dfbuffer(length=return_req_dict["points"], width=1) output_buffer.add((x0, )) else: output_buffer = None # import implicit_euler to be used in the first iterations # this is because we don't have any dx when we start, nor any past point value if (max_x is not None and max_x > 0) or max_dx is not None: import implicit_euler printing.print_info_line(("MNA (reduced):", 5), verbose) printing.print_info_line((str(mna), 5), verbose) printing.print_info_line(("D (reduced):", 5), verbose) printing.print_info_line((str(D), 5), verbose) # setup the initial values to start the iteration: x = None time = tstart nv = len(circ.nodes_dict) Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose) # lo step viene generato automaticamente, ma non superare mai quello fornito. if use_step_control: #tstep = min((tstop-tstart)/9999.0, HMAX, 100.0 * options.hmin) tstep = min((tstop - tstart) / 9999.0, HMAX) printing.print_info_line(("Initial step: %g" % (tstep, ), 5), verbose) if max_dx is None: max_dx_plus_1 = None else: max_dx_plus_1 = max_dx + 1 if pmax_dx is None: pmax_dx_plus_1 = None else: pmax_dx_plus_1 = pmax_dx + 1 # setup error vectors aerror = numpy.mat(numpy.zeros((x0.shape[0], 1))) aerror[:nv - 1, 0] = options.vea aerror[nv - 1:, 0] = options.vea rerror = numpy.mat(numpy.zeros((x0.shape[0], 1))) rerror[:nv - 1, 0] = options.ver rerror[nv - 1:, 0] = options.ier iter_n = 0 # contatore d'iterazione lte = None sol = results.tran_solution(circ, tstart, tstop, op=x0, method=method, outfile=data_filename) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(increments_for_step=1) tick.display(verbose > 1) while time < tstop: if iter_n < max(max_x, max_dx_plus_1): x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff = \ implicit_euler.get_df((thebuffer.get_df_vector()[0],), tstep, \ predict=(use_step_control and (iter_n >= max(pmax_x, pmax_dx_plus_1)))) else: [x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff] = \ df.get_df(thebuffer.get_df_vector(), tstep, predict=use_step_control) if options.transient_prediction_as_x0 and use_step_control and prediction is not None: x0 = prediction elif x is not None: x0 = x (x1, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(x_coeff, D)), Ndc=N, Ntran=D * const, circ=circ, Gmin=Gmin_matrix, x0=x0, time=(time + tstep), locked_nodes=locked_nodes, MAXIT=options.transient_max_nr_iter, verbose=0) if solved: old_step = tstep #we will modify it, if we're using step control otherwise it's the same # step control (yeah) if use_step_control: if x_lte_coeff is not None and pred_lte_coeff is not None and prediction is not None: # this is the Local Truncation Error :) lte = abs((x_lte_coeff / (pred_lte_coeff - x_lte_coeff)) * (prediction - x1)) # it should NEVER happen that new_step > 2*tstep, for stability new_step_coeff = 2 for index in xrange(x.shape[0]): if lte[index, 0] != 0: new_value = ((aerror[index, 0] + rerror[index, 0]*abs(x[index, 0])) / lte[index, 0]) \ ** (1.0 / (df.order+1)) if new_value < new_step_coeff: new_step_coeff = new_value #print new_value new_step = tstep * new_step_coeff if options.transient_use_aposteriori_step_control and new_step < options.transient_aposteriori_step_threshold * tstep: #don't recalculate a x for a small change tstep = check_step(new_step, time, tstop, HMAX) #print "Apost. (reducing) step = "+str(tstep) continue tstep = check_step(new_step, time, tstop, HMAX) # used in the next iteration #print "Apriori tstep = "+str(tstep) else: #print "LTE not calculated." lte = None if print_step_and_lte and lte is not None: #if you wish to look at the step. We print just a lte flte.write( str(time) + "\t" + str(old_step) + "\t" + str(lte.max()) + "\n") # if we get here, either aposteriori_step_control is # disabled, or it's enabled and the error is small # enough. Anyway, the result is GOOD, STORE IT. time = time + old_step x = x1 iter_n = iter_n + 1 sol.add_line(time, x) dxdt = numpy.multiply(x_coeff, x) + const thebuffer.add((time, x, dxdt)) if output_buffer is not None: output_buffer.add((x, )) tick.step(verbose > 1) else: # If we get here, Newton failed to converge. We need to reduce the step... if use_step_control: tstep = tstep / 5.0 tstep = check_step(tstep, time, tstop, HMAX) printing.print_info_line( ("At %g s reducing step: %g s (convergence failed)" % (time, tstep), 5), verbose) else: #we can't reduce the step printing.print_general_error("Can't converge with step " + str(tstep) + ".") printing.print_general_error( "Try setting --t-max-nr to a higher value or set step to a lower one." ) solved = False break if options.transient_max_time_iter and iter_n == options.transient_max_time_iter: printing.print_general_error("MAX_TIME_ITER exceeded (" + str(options.transient_max_time_iter) + "), iteration halted.") solved = False break if print_step_and_lte: flte.close() tick.hide(verbose > 1) if solved: printing.print_info_line(("done.", 3), verbose) printing.print_info_line( ("Average time step: %g" % ((tstop - tstart) / iter_n, ), 3), verbose) if output_buffer: ret_value = output_buffer.get_as_matrix() else: ret_value = sol else: print "failed." ret_value = None return ret_value
def mdn_solver( x, mna, circ, T, MAXIT, nv, locked_nodes, time=None, print_steps=False, vector_norm=lambda v: max(abs(v)), debug=True, ): """ Solves a problem like F(x) = 0 using the Newton Algorithm with a variable damping td. Where: F(x) = mna*x + T + T(x) mna is the Modified Network Analysis matrix of the circuit T(x) is the contribute of nonlinear elements to KCL T -> independent sources, time invariant and invariant x is the initial guess. Every x is given by: x = x + td*dx Where td is a damping coefficient to avoid overflow in non-linear components and excessive oscillation in the very first iteration. Afterwards td=1 To calculate td, an array of locked nodes is needed. The convergence check is done this way: if (vector_norm(dx) < alpha*vector_norm(x) + beta) and (vector_norm(residuo) < alpha*vector_norm(x) + beta): beta should be the machine precision, alpha 1e-(N+1) where N is the number of the significative digits you wish to have. Parameters: x: the initial guess. If set to None, it will be initialized to all zeros. Specifying a initial guess may improve the convergence time of the algorithm and determine which solution (if any) is found if there are more than one. mna: the Modified Network Analysis matrix of the circuit, reduced, see above element_list: T: see above. MAXIT: Maximum iterations that the method may perform. nv: number of nodes in the circuit (counting the ref, 0) locked_nodes: see get_td() and dc_solve(), generated by circ.get_locked_nodes() time: the value of time to be passed to non_linear _and_ time variant elements. print_steps: show a progress indicator vector_norm: Returns a tuple with: the solution, the remaining error, a boolean that is true whenever the method exits because of a successful convergence check the number of NR iterations performed """ # OLD COMMENT: FIXME REWRITE: solve through newton # problem is F(x)= mna*x +H(x) = 0 # H(x) = N + T(x) # lets say: J = dF/dx = mna + dT(x)/dx # J*dx = -1*(mna*x+N+T(x)) # dT/dx � lo jacobiano -> g_eq (o gm) # print_steps = False # locked_nodes = get_locked_nodes(element_list) mna_size = mna.shape[0] nonlinear_circuit = circ.is_nonlinear() tick = ticker.ticker(increments_for_step=1) tick.display(print_steps) if x is None: x = numpy.mat(numpy.zeros((mna_size, 1))) # if no guess was specified, its all zeros else: if not x.shape[0] == mna_size: raise Exception, "x0s size is different from expected: " + str(x.shape[0]) + " " + str(mna_size) if T is None: printing.print_warning("dc_analysis.mdn_solver called with T==None, setting T=0. BUG or no sources in circuit?") T = numpy.mat(numpy.zeros((mna_size, 1))) converged = False iteration = 0 for iteration in xrange(MAXIT): # newton iteration counter tick.step(print_steps) if nonlinear_circuit: # build dT(x)/dx (stored in J) and Tx(x) J, Tx = build_J_and_Tx(x, mna_size, circ.elements, time) J = J + mna else: J = mna Tx = 0 residuo = mna * x + T + Tx dx = numpy.linalg.inv(J) * (-1 * residuo) x = x + get_td(dx, locked_nodes, n=iteration) * dx if iteration > 0: if convergence_check(x, dx, residuo, nv - 1)[0]: converged = True break if vector_norm(dx) is numpy.nan: # Overflow raise OverflowError tick.hide(print_steps) if debug and not converged: convergence_by_node = convergence_check(x, dx, residuo, nv - 1, debug=True)[1] else: convergence_by_node = [] return (x, residuo, converged, iteration + 1, convergence_by_node)
def get_favlist(): favlist = load_favlist() T = ticker() print '''<div align="center"> <TABLE id="dataTable" style="width:100%" border="1" class="sortable"> <thead> <th>選取</th> <th>項次</th> <th>代號</th> <th>起始價格</th> <th>當前價格</th> <th>獲利</th> <th class="sorttable_nosort">百分比</th> <th class="sorttable_nosort">日期<br> <input type="date" id="gdate" onchange="global_change_date(this)"> </th> <th class="sorttable_nosort">評等<br> <select name="cate" onchange="global_change_cate(this)"> <option value="None" selected="selected">None</option> <option value="A">A</option> <option value="B">B</option> <option value="C">C</option> <option value="D">D</option> <option value="E">E</option> <option value="F">G</option> <option value="G">G</option> </select> </th> <th>註解</th> </thead> <tbody>''' if len(favlist) == 0: print ''' <tr> <TD><INPUT type="checkbox" name="chk"></TD> <TD> 1 </TD> <TD><INPUT type="text" id="text0" name="text0" value="" onchange="fav_onchange()"></TD> <TD></TD> <TD></TD> <TD></TD> <TD></TD> <TD><input type="date" id="date0" name="date0" value="" onchange="fav_onchange()"> </TD> <TD><select name="cate"> <option value="None" selected="selected">None</option> <option value="A">A</option> <option value="B">B</option> <option value="C">C</option> <option value="D">D</option> <option value="E">E</option> <option value="F">G</option> <option value="G">G</option> </select> </TD> <TD><input type="text" id="memo0" name="memo0" value="" onchange="fav_onchange()"></TD> </tr>''' else: idx = 0 for x in favlist: (price, last_price) = T.get_price_by_date( x[0] ) delta = price - x[4] if x[4] != 0: perc = 100.0 * delta / x[4] else: perc = 0.0 T.load_favlist() cate_html = T.get_cate_html( x[0] ) print ''' <tr> <TD><INPUT type="checkbox" name="chk"></TD> <TD> %d </TD> <TD><INPUT type="text" id="text%d" name="text%d" value="%s" onchange="fav_onchange()" ></TD> <TD>%.2f</TD> <TD>%.2f</TD> <TD>%.2f</TD> <TD>%.2f</TD> <TD class="sorttable_nosort"><input type="date" id="date%d" name="date%d" value="%s" onchange="fav_onchange()" > </TD> <th class="sorttable_nosort">%s</th> <TD class="sorttable_nosort" ><input type="text" id="memo%d" name="memo%d" value="%s" onchange="fav_onchange()" ></TD> </tr>''' % (idx+1, \ idx, idx, x[0], \ x[4], \ price, \ delta, \ perc, \ idx, idx, x[1], \ cate_html, \ idx, idx, x[2] ) idx += 1 print '''
def transient_analysis(circ, tstart, tstep, tstop, method=TRAP, x0=None, mna=None, N=None, \ D=None, data_filename="stdout", use_step_control=True, return_req_dict=None, verbose=3): """Performs a transient analysis of the circuit described by circ. Important parameters: - tstep is the maximum step to be allowed during simulation. - print_step_and_lte is a boolean value. Is set to true, the step and the LTE of the first element of x will be printed out to step_and_lte.graph in the current directory. """ if data_filename == "stdout": verbose = 0 _debug = False if _debug: print_step_and_lte = True else: print_step_and_lte = False HMAX = tstep #check parameters if tstart > tstop: printing.print_general_error("tstart > tstop") sys.exit(1) if tstep < 0: printing.print_general_error("tstep < 0") sys.exit(1) if verbose > 4: tmpstr = "Vea = %g Ver = %g Iea = %g Ier = %g max_time_iter = %g HMIN = %g" % \ (options.vea, options.ver, options.iea, options.ier, options.transient_max_time_iter, options.hmin) printing.print_info_line((tmpstr, 5), verbose) locked_nodes = circ.get_locked_nodes() if print_step_and_lte: flte = open("step_and_lte.graph", "w") flte.write("#T\tStep\tLTE\n") printing.print_info_line(("Starting transient analysis: ", 3), verbose) printing.print_info_line(("Selected method: %s" % (method,), 3), verbose) #It's a good idea to call transient with prebuilt MNA and N matrix #the analysis will be slightly faster (long netlists). if mna is None or N is None: (mna, N) = dc_analysis.generate_mna_and_N(circ) mna = utilities.remove_row_and_col(mna) N = utilities.remove_row(N, rrow=0) elif not mna.shape[0] == N.shape[0]: printing.print_general_error("mna matrix and N vector have different number of columns.") sys.exit(0) if D is None: # if you do more than one tran analysis, output streams should be changed... # this needs to be fixed D = generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) # setup x0 if x0 is None: printing.print_info_line(("Generating x(t=%g) = 0" % (tstart,), 5), verbose) x0 = numpy.matrix(numpy.zeros((mna.shape[0], 1))) opsol = results.op_solution(x=x0, error=x0, circ=circ, outfile=None) else: if isinstance(x0, results.op_solution): opsol = x0 x0 = x0.asmatrix() else: opsol = results.op_solution(x=x0, error=numpy.matrix(numpy.zeros((mna.shape[0], 1))), circ=circ, outfile=None) printing.print_info_line(("Using the supplied op as x(t=%g)." % (tstart,), 5), verbose) if verbose > 4: print "x0:" opsol.print_short() # setup the df method printing.print_info_line(("Selecting the appropriate DF ("+method+")... ", 5), verbose, print_nl=False) if method == IMPLICIT_EULER: import implicit_euler as df elif method == TRAP: import trap as df elif method == GEAR1: import gear as df df.order = 1 elif method == GEAR2: import gear as df df.order = 2 elif method == GEAR3: import gear as df df.order = 3 elif method == GEAR4: import gear as df df.order = 4 elif method == GEAR5: import gear as df df.order = 5 elif method == GEAR6: import gear as df df.order = 6 else: df = import_custom_df_module(method, print_out=(data_filename != "stdout")) # df is none if module is not found if df is None: sys.exit(23) if not df.has_ff() and use_step_control: printing.print_warning("The chosen DF does not support step control. Turning off the feature.") use_step_control = False #use_aposteriori_step_control = False printing.print_info_line(("done.", 5), verbose) # setup the data buffer # if you use the step control, the buffer has to be one point longer. # That's because the excess point is used by a FF in the df module to predict the next value. printing.print_info_line(("Setting up the buffer... ", 5), verbose, print_nl=False) ((max_x, max_dx), (pmax_x, pmax_dx)) = df.get_required_values() if max_x is None and max_dx is None: printing.print_general_error("df doesn't need any value?") sys.exit(1) if use_step_control: thebuffer = dfbuffer(length=max(max_x, max_dx, pmax_x, pmax_dx) + 1, width=3) else: thebuffer = dfbuffer(length=max(max_x, max_dx) + 1, width=3) thebuffer.add((tstart, x0, None)) #setup the first values printing.print_info_line(("done.", 5), verbose) #FIXME #setup the output buffer if return_req_dict: output_buffer = dfbuffer(length=return_req_dict["points"], width=1) output_buffer.add((x0,)) else: output_buffer = None # import implicit_euler to be used in the first iterations # this is because we don't have any dx when we start, nor any past point value if (max_x is not None and max_x > 0) or max_dx is not None: import implicit_euler printing.print_info_line(("MNA (reduced):", 5), verbose) printing.print_info_line((str(mna), 5), verbose) printing.print_info_line(("D (reduced):", 5), verbose) printing.print_info_line((str(D), 5), verbose) # setup the initial values to start the iteration: x = None time = tstart nv = len(circ.nodes_dict) Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose) # lo step viene generato automaticamente, ma non superare mai quello fornito. if use_step_control: #tstep = min((tstop-tstart)/9999.0, HMAX, 100.0 * options.hmin) tstep = min((tstop-tstart)/9999.0, HMAX) printing.print_info_line(("Initial step: %g"% (tstep,), 5), verbose) if max_dx is None: max_dx_plus_1 = None else: max_dx_plus_1 = max_dx +1 if pmax_dx is None: pmax_dx_plus_1 = None else: pmax_dx_plus_1 = pmax_dx +1 # setup error vectors aerror = numpy.mat(numpy.zeros((x0.shape[0], 1))) aerror[:nv-1, 0] = options.vea aerror[nv-1:, 0] = options.vea rerror = numpy.mat(numpy.zeros((x0.shape[0], 1))) rerror[:nv-1, 0] = options.ver rerror[nv-1:, 0] = options.ier iter_n = 0 # contatore d'iterazione lte = None sol = results.tran_solution(circ, tstart, tstop, op=x0, method=method, outfile=data_filename) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(increments_for_step=1) tick.display(verbose > 1) while time < tstop: if iter_n < max(max_x, max_dx_plus_1): x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff = \ implicit_euler.get_df((thebuffer.get_df_vector()[0],), tstep, \ predict=(use_step_control and (iter_n >= max(pmax_x, pmax_dx_plus_1)))) else: [x_coeff, const, x_lte_coeff, prediction, pred_lte_coeff] = \ df.get_df(thebuffer.get_df_vector(), tstep, predict=use_step_control) if options.transient_prediction_as_x0 and use_step_control and prediction is not None: x0 = prediction elif x is not None: x0 = x (x1, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(x_coeff, D)) , Ndc=N, Ntran=D*const, circ=circ, Gmin=Gmin_matrix, x0=x0, time=(time + tstep), locked_nodes=locked_nodes, MAXIT=options.transient_max_nr_iter, verbose=0) if solved: old_step = tstep #we will modify it, if we're using step control otherwise it's the same # step control (yeah) if use_step_control: if x_lte_coeff is not None and pred_lte_coeff is not None and prediction is not None: # this is the Local Truncation Error :) lte = abs((x_lte_coeff / (pred_lte_coeff - x_lte_coeff)) * (prediction - x1)) # it should NEVER happen that new_step > 2*tstep, for stability new_step_coeff = 2 for index in xrange(x.shape[0]): if lte[index, 0] != 0: new_value = ((aerror[index, 0] + rerror[index, 0]*abs(x[index, 0])) / lte[index, 0]) \ ** (1.0 / (df.order+1)) if new_value < new_step_coeff: new_step_coeff = new_value #print new_value new_step = tstep * new_step_coeff if options.transient_use_aposteriori_step_control and new_step < options.transient_aposteriori_step_threshold * tstep: #don't recalculate a x for a small change tstep = check_step(new_step, time, tstop, HMAX) #print "Apost. (reducing) step = "+str(tstep) continue tstep = check_step(new_step, time, tstop, HMAX) # used in the next iteration #print "Apriori tstep = "+str(tstep) else: #print "LTE not calculated." lte = None if print_step_and_lte and lte is not None: #if you wish to look at the step. We print just a lte flte.write(str(time)+"\t"+str(old_step)+"\t"+str(lte.max())+"\n") # if we get here, either aposteriori_step_control is # disabled, or it's enabled and the error is small # enough. Anyway, the result is GOOD, STORE IT. time = time + old_step x = x1 iter_n = iter_n + 1 sol.add_line(time, x) dxdt = numpy.multiply(x_coeff, x) + const thebuffer.add((time, x, dxdt)) if output_buffer is not None: output_buffer.add((x, )) tick.step(verbose > 1) else: # If we get here, Newton failed to converge. We need to reduce the step... if use_step_control: tstep = tstep/5.0 tstep = check_step(tstep, time, tstop, HMAX) printing.print_info_line(("At %g s reducing step: %g s (convergence failed)" % (time, tstep), 5), verbose) else: #we can't reduce the step printing.print_general_error("Can't converge with step "+str(tstep)+".") printing.print_general_error("Try setting --t-max-nr to a higher value or set step to a lower one.") solved = False break if options.transient_max_time_iter and iter_n == options.transient_max_time_iter: printing.print_general_error("MAX_TIME_ITER exceeded ("+str(options.transient_max_time_iter)+"), iteration halted.") solved = False break if print_step_and_lte: flte.close() tick.hide(verbose > 1) if solved: printing.print_info_line(("done.", 3), verbose) printing.print_info_line(("Average time step: %g" % ((tstop - tstart)/iter_n,), 3), verbose) if output_buffer: ret_value = output_buffer.get_as_matrix() else: ret_value = sol else: print "failed." ret_value = None return ret_value
def dc_analysis(circ, start, stop, step, source, sweep_type='LINEAR', guess=True, x0=None, outfile="stdout", verbose=3): """Performs a sweep of the value of V or I of a independent source from start value to stop value using the provided step. For every circuit generated, computes the op and prints it out. This function relays on dc_analysis.op_analysis to actually solve each circuit. circ: the circuit instance to be simulated start: start value of the sweep source stop: stop value of the sweep source step: the step size in the sweep source: string, the name of the source to be swept sweep_type: either options.dc_lin_step (default) or options.dc_log_step guess: op_analysis will guess to start the first NR iteration for the first point, the previsious dc is used from then on outfile: string, filename of the output file. If set to 'stdout', prints to screen. verbose: verbosity level Returns: * A results.dc_solution instance, if a solution was found for at least one sweep value. * None, if an error occurred (eg invalid start/stop/step values) or there was no solution for any sweep value. """ if outfile == 'stdout': verbose = 0 printing.print_info_line(("Starting DC analysis:", 2), verbose) elem_type, elem_descr = source[0].lower(), source.lower() # eg. 'v', 'v34' sweep_label = elem_type[0].upper() + elem_descr[1:] if sweep_type == options.dc_log_step and stop - start < 0: printing.print_general_error( "DC analysis has log sweeping and negative stepping.") sys.exit(1) if (stop - start) * step < 0: raise ValueError, "Unbonded stepping in DC analysis." points = (stop - start) / step + 1 sweep_type = sweep_type.upper()[:3] if sweep_type == options.dc_log_step: dc_iter = utilities.log_axis_iterator(stop, start, nsteps=points) elif sweep_type == options.dc_lin_step: dc_iter = utilities.lin_axis_iterator(stop, start, nsteps=points) else: printing.print_general_error("Unknown sweep type: %s" % (sweep_type, )) sys.exit(1) if elem_type != 'v' and elem_type != 'i': printing.print_general_error( "Sweeping is possible only with voltage and current sources. (" + str(elem_type) + ")") sys.exit(1) source_elem = None for index in xrange(len(circ)): if circ[index].part_id.lower() == elem_descr: if elem_type == 'v': if isinstance(circ[index], devices.VSource): source_elem = circ[index] break if elem_type == 'i': if isinstance(circ[index], devices.ISource): source_elem = circ[index] break if not source_elem: printing.print_general_error("%s was not found." % source[0].part_id) sys.exit(1) if isinstance(source_elem, devices.VSource): initial_value = source_elem.dc_value else: initial_value = source_elem.dc_value # If the initial value is set to None, op_analysis will attempt a smart guess (if guess), # Then for each iteration, the last result is used as x0, since op_analysis will not # attempt to guess the op if x0 is not None. x = x0 sol = results.dc_solution(circ, start, stop, sweepvar=sweep_label, stype=sweep_type, outfile=outfile) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(1) tick.display(verbose > 2) # sweep setup # tarocca il generatore di tensione, avvia DC silenziosa, ritarocca etc index = 0 for sweep_value in dc_iter: index = index + 1 if isinstance(source_elem, devices.VSource): source_elem.dc_value = sweep_value else: source_elem.dc_value = sweep_value # silently calculate the op x = op_analysis(circ, x0=x, guess=guess, verbose=0) if x is None: tick.hide(verbose > 2) if not options.dc_sweep_skip_allowed: print "Could't solve the circuit for sweep value:", start + index * step solved = False break else: print "Skipping sweep value:", start + index * step continue solved = True sol.add_op(sweep_value, x) tick.step(verbose > 2) tick.hide(verbose > 2) if solved: printing.print_info_line(("done", 3), verbose) # clean up if isinstance(source_elem, devices.VSource): source_elem.dc_value = initial_value else: source_elem.dc_value = initial_value return sol if solved else None
def dc_analysis(circ, start, stop, step, type_descr, xguess=None, data_filename="stdout", print_int_nodes=True, guess=True, stype="LINEAR", verbose=2): """Performs a sweep of the value of V or I of a independent source from start value to stop value using the provided step. For every circuit generated, computes the op and prints it out. This function relays on dc_analysis.op_analysis to actually solve each circuit. circ: the circuit instance to be simulated start: start value of the sweep source stop: stop value of the sweep source step: step value of the sweep source elem_type: string, may be 'vsource' or 'isource' elem_descr: the description of the element, used to recognize it in circ (i.e v<desc>) data_filename: string, filename of the output file. If set to stdout, prints to screen print_int_nodes: do it guess: op_analysis will guess to start the first NR iteration for the first point, the previsious dc is used from then on verbose: verbosity level Returns: A results.dc_solution instance, if a solution was found for at least one sweep value. None, if an error occurred (eg invalid start/stop/step values) or there was no solution for any sweep value. """ if data_filename == 'stdout': verbose = 0 printing.print_info_line(("Starting DC analysis:", 2), verbose) (elem_type, elem_descr) = type_descr sweep_label = elem_type[0].upper()+elem_descr #check step/start/stop parameters if step == 0: printing.print_general_error("Can't sweep with step=0 !") sys.exit(1) if start > stop: printing.print_general_error("DC analysis has start > stop") sys.exit(1) if (stop-start)/step < 1: printing.print_general_error("DC analysis has number of steps < 1") sys.exit(1) if stype == options.dc_log_step: dc_iter = utilities.log_axis_iterator(stop, start, nsteps=int(stop-start)/step) elif stype == options.dc_lin_step: dc_iter = utilities.lin_axis_iterator(stop, start, nsteps=int(stop-start)/step) else: printing.print_general_error("Unknown sweep type: %s" % (stype,)) sys.exit(1) if elem_type != 'vsource' and elem_type != 'isource': printing.print_general_error("Sweeping is possible only with voltage and current sources. (" +str(elem_type)+ ")") sys.exit(1) source_elem = None for index in xrange(len(circ.elements)): if circ.elements[index].descr == elem_descr: if elem_type == 'vsource': if isinstance(circ.elements[index], devices.vsource): source_elem = circ.elements[index] break if elem_type == 'isource': if isinstance(circ.elements[index], devices.isource): source_elem = circ.elements[index] break if not source_elem: printing.print_general_error(elem_type + " element with descr. "+ elem_descr +" was not found.") sys.exit(1) if isinstance(source_elem, devices.vsource): initial_value = source_elem.vdc else: initial_value = source_elem.idc # The initial value is set to None and this IS CORRECT. # op_analysis will attempt to do a smart guess, if called with x0 = None and guess=True # For each iteration over the source voltage (current) value, the last result is used as x0. # op_analysis will not attempt to guess the op if x0 is not None x = None sol = results.dc_solution(circ, start, stop, sweepvar=sweep_label, stype=stype, outfile=data_filename) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(1) tick.display(verbose>2) #sweep setup #tarocca il generatore di tensione, avvia DC silenziosa, ritarocca etc index = 0 for sweep_value in dc_iter: index = index + 1 if isinstance(source_elem, devices.vsource): source_elem.vdc = sweep_value else: source_elem.idc = sweep_value #silently calculate the op op = op_analysis(circ, x0=x, guess=guess, verbose=0) if op is None: tick.hide(verbose>2) if not options.dc_sweep_skip_allowed: print "Could't solve the circuit for sweep value:", start + index*step solved = False break else: print "Skipping sweep value:", start + index*step continue solved = True sol.add_op(sweep_value, op) if guess: guess = False tick.step(verbose>2) tick.hide(verbose>2) if solved: printing.print_info_line(("done", 3), verbose) # clean up if isinstance(source_elem, devices.vsource): source_elem.vdc = initial_value else: source_elem.idc = initial_value return sol if solved else None
import ticker, tickable, time a = tickable.tickable(5) b = tickable.tickable(500) t = ticker.ticker([a, b]) # Query values 'Tick #, (a,b)', t.tickNo, (a.prop(), bprop()) # Reset values a.prop(0), b.prop(10) # Finally t.end()
def shooting(circ, period, step=None, mna=None, Tf=None, D=None, points=None, autonomous=False, data_filename='stdout', vector_norm=lambda v: max(abs(v)), verbose=3): """Performs a periodic steady state analysis based on the algorithm described in Brambilla, A.; D'Amore, D., "Method for steady-state simulation of strongly nonlinear circuits in the time domain," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol.48, no.7, pp.885-889, Jul 2001 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=933329&isnumber=20194 The results have been computed again by me, the formulas are not exactly the same, but the idea behind the shooting algorithm is. This method allows us to have a period with many points without having to invert a huge matrix (and being limited to the maximum matrix size). A tran is performed to initialize the solver. We compute the change in the last point, calculating several matrices in the process. From that, with the same matrices we calculate the changes in all points, starting from 0 (which is the same as the last one), then 1, ... Key points: - Only not autonomous circuits are supported. - The time step is constant - Implicit euler is used as DF Parameters: circ is the circuit description class period is the period of the solution mna, D, Tf are not compulsory they will be computed if they're set to None step is the time step between consecutive points points is the number of points to be used step and points are mutually exclusive options: - if step is specified, the number of points will be automatically determined - if points is set, the step will be automatically determined - if none of them is set, options.shooting_default_points will be used as points autonomous has to be False, autonomous circuits are not supported data_filename is the output filename. Defaults to stdout. verbose is set to zero (print errors only) if datafilename == 'stdout'. Returns: nothing """ if data_filename == "stdout": verbose = 0 printing.print_info_line(("Starting periodic steady state analysis:", 3), verbose) printing.print_info_line(("Method: shooting", 3), verbose) if mna is None or Tf is None: (mna, Tf) = dc_analysis.generate_mna_and_N(circ) mna = utilities.remove_row_and_col(mna) Tf = utilities.remove_row(Tf, rrow=0) elif not mna.shape[0] == Tf.shape[0]: printing.print_general_error( "mna matrix and N vector have different number of rows.") sys.exit(0) if D is None: D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) elif not mna.shape == D.shape: printing.print_general_error( "mna matrix and D matrix have different sizes.") sys.exit(0) (points, step) = check_step_and_points(step, points, period) print "points", points print "step", step n_of_var = mna.shape[0] locked_nodes = circ.get_locked_nodes() printing.print_info_line(( "Starting transient analysis for algorithm init: tstop=%g, tstep=%g... " % (10 * points * step, step), 3), verbose, print_nl=False) xtran = transient.transient_analysis(circ=circ, tstart=0, tstep=step, tstop=10*points*step, method="TRAP", x0=None, mna=mna, N=Tf, \ D=D, use_step_control=False, data_filename=data_filename+".tran", return_req_dict={"points":points}, verbose=0) if xtran is None: print "failed." return None printing.print_info_line(("done.", 3), verbose) x = [] for index in range(points): x.append(xtran[index * n_of_var:(index + 1) * n_of_var, 0]) tick = ticker.ticker(increments_for_step=1) MAass_static, MBass = build_static_MAass_and_MBass(mna, D, step) # This contains # the time invariant part, Tf # time variable component: Tt this is always the same, since the time interval is the same # this holds all time-dependent sources (both V/I). Tass_static_vector = build_Tass_static_vector(circ, Tf, points, step, tick, n_of_var, verbose) converged = False printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick.reset() tick.display(verbose > 2) iteration = 0 # newton iteration counter conv_counter = 0 while True: dx = [] Tass_variable_vector = [] MAass_variable_vector = [] for index in range(points): if index == 0: xn_minus_1 = x[points - 1] else: xn_minus_1 = x[index - 1] MAass_variable, Tass_variable = get_variable_MAass_and_Tass( circ, x[index], xn_minus_1, mna, D, step, n_of_var) MAass_variable_vector.append(MAass_variable + MAass_static) Tass_variable_vector.append(Tass_variable + Tass_static_vector[index]) dxN = compute_dxN(circ, MAass_variable_vector, MBass, Tass_variable_vector, n_of_var, points, verbose=verbose) td = dc_analysis.get_td(dxN, locked_nodes, n=-1) x[points - 1] = td * dxN + x[points - 1] for index in range(points - 1): if index == 0: dxi_minus_1 = dxN else: dxi_minus_1 = dx[index - 1] dx.append( compute_dx(MAass_variable_vector[index], MBass, Tass_variable_vector[index], dxi_minus_1)) td = dc_analysis.get_td(dx[index], locked_nodes, n=-1) x[index] = td * dx[index] + x[index] dx.append(dxN) if (vector_norm_wrapper(dx, vector_norm) < min(options.ver, options.ier) * vector_norm_wrapper( x, vector_norm) + min(options.vea, options.iea)): #\ #and (dc_analysis.vector_norm(residuo) < options.er*dc_analysis.vector_norm(x) + options.ea): if conv_counter == 3: converged = True break else: conv_counter = conv_counter + 1 elif vector_norm(dx[points - 1]) is numpy.nan: #needs work fixme raise OverflowError #break else: conv_counter = 0 tick.step(verbose > 2) if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter: printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.") converged = False break else: iteration = iteration + 1 tick.hide(verbose > 2) if converged: printing.print_info_line(("done.", 3), verbose) t = numpy.mat(numpy.arange(points) * step) t = t.reshape((1, points)) xmat = x[0] for index in xrange(1, points): xmat = numpy.concatenate((xmat, x[index]), axis=1) sol = results.pss_solution(circ=circ, method="shooting", period=period, outfile=data_filename, t_array=t, x_array=xmat) #print_results(circ, x, fdata, points, step) else: print "failed." sol = None return sol
def bfpss(circ, period, step=None, points=None, autonomous=False, x0=None, mna=None, Tf=None, D=None, outfile='stdout', vector_norm=lambda v: max(abs(v)), verbose=3): """Performs a PSS analysis. Time step is constant, IE will be used as DF Parameters: circ is the circuit description class period is the period of the solution mna, D, Tf are not compulsory they will be computed if they're set to None step is the time step between consecutive points points is the number of points to be used step and points are mutually exclusive options: - if step is specified, the number of points will be automatically determined - if points is set, the step will be automatically determined - if none of them is set, options.shooting_default_points will be used as points autonomous has to be False, autonomous circuits are not supported x0 is the initial guess to be used. Needs work. outfile is the output filename. Defaults to stdout. verbose is set to zero (print errors only) if datafilename == 'stdout'. Returns: nothing """ if outfile == "stdout": verbose = 0 printing.print_info_line(("Starting periodic steady state analysis:", 3), verbose) printing.print_info_line(("Method: brute-force", 3), verbose) if mna is None or Tf is None: (mna, Tf) = dc_analysis.generate_mna_and_N(circ, verbose=verbose) mna = utilities.remove_row_and_col(mna) Tf = utilities.remove_row(Tf, rrow=0) elif not mna.shape[0] == Tf.shape[0]: printing.print_general_error( "mna matrix and N vector have different number of rows.") sys.exit(0) if D is None: D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) elif not mna.shape == D.shape: printing.print_general_error( "mna matrix and D matrix have different sizes.") sys.exit(0) (points, step) = check_step_and_points(step, points, period) n_of_var = mna.shape[0] locked_nodes = circ.get_locked_nodes() tick = ticker.ticker(increments_for_step=1) CMAT = build_CMAT(mna, D, step, points, tick, n_of_var=n_of_var, verbose=verbose) x = build_x(mna, step, points, tick, x0=x0, n_of_var=n_of_var, verbose=verbose) Tf = build_Tf(Tf, points, tick, n_of_var=n_of_var, verbose=verbose) # time variable component: Tt this is always the same in each iter. So we build it once for all # this holds all time-dependent sources (both V/I). Tt = build_Tt(circ, points, step, tick, n_of_var=n_of_var, verbose=verbose) # Indices to differentiate between currents and voltages in the # convergence check nv_indices = [] ni_indices = [] nv_1 = len(circ.nodes_dict) - 1 ni = n_of_var - nv_1 for i in range(points): nv_indices += (i * mna.shape[0] * numpy.ones(nv_1) + \ numpy.arange(nv_1)).tolist() ni_indices += (i * mna.shape[0] * numpy.ones(ni) + \ numpy.arange(nv_1, n_of_var)).tolist() converged = False printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick.reset() tick.display(verbose > 2) J = numpy.mat(numpy.zeros(CMAT.shape)) T = numpy.mat(numpy.zeros((CMAT.shape[0], 1))) # td is a numpy matrix that will hold the damping factors td = numpy.mat(numpy.zeros((points, 1))) iteration = 0 # newton iteration counter while True: if iteration: # the first time are already all zeros J[:, :] = 0 T[:, 0] = 0 td[:, 0] = 0 for index in xrange(1, points): for elem in circ: # build all dT(xn)/dxn (stored in J) and T(x) if elem.is_nonlinear: oports = elem.get_output_ports() for opindex in range(len(oports)): dports = elem.get_drive_ports(opindex) v_ports = [] for dpindex in range(len(dports)): dn1, dn2 = dports[dpindex] v = 0 # build v: remember we trashed the 0 row and 0 col of mna -> -1 if dn1: v = v + x[index * n_of_var + dn1 - 1, 0] if dn2: v = v - x[index * n_of_var + dn2 - 1, 0] v_ports.append(v) # all drive ports are ready. n1, n2 = oports[opindex][0], oports[opindex][1] if n1: T[index * n_of_var + n1 - 1, 0] = T[index * n_of_var + n1 - 1, 0] + \ elem.i(opindex, v_ports) if n2: T[index * n_of_var + n2 - 1, 0] = T[index * n_of_var + n2 - 1, 0] - \ elem.i(opindex, v_ports) for dpindex in range(len(dports)): dn1, dn2 = dports[dpindex] if n1: if dn1: J[index * n_of_var + n1 - 1, index * n_of_var + dn1 - 1] = \ J[index * n_of_var + n1 - 1, index * n_of_var + dn1 - 1] + \ elem.g(opindex, v_ports, dpindex) if dn2: J[index * n_of_var + n1 - 1, index * n_of_var + dn2 - 1] =\ J[index * n_of_var + n1 - 1, index * n_of_var + dn2 - 1] - 1.0 * \ elem.g(opindex, v_ports, dpindex) if n2: if dn1: J[index * n_of_var + n2 - 1, index * n_of_var + dn1 - 1] = \ J[index * n_of_var + n2 - 1, index * n_of_var + dn1 - 1] - 1.0 * \ elem.g(opindex, v_ports, dpindex) if dn2: J[index * n_of_var + n2 - 1, index * n_of_var + dn2 - 1] =\ J[index * n_of_var + n2 - 1, index * n_of_var + dn2 - 1] + \ elem.g(opindex, v_ports, dpindex) J = J + CMAT residuo = CMAT * x + T + Tf + Tt dx = -1 * (numpy.linalg.inv(J) * residuo) # td for index in xrange(points): td[index, 0] = dc_analysis.get_td(dx[index * n_of_var:(index + 1) * n_of_var, 0], locked_nodes, n=-1) x = x + min(abs(td))[0, 0] * dx # convergence check converged = convergence_check(dx, x, nv_indices, ni_indices, vector_norm) if converged: break tick.step(verbose > 2) if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter: printing.print_general_error("Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.") converged = False break else: iteration = iteration + 1 tick.hide(verbose > 2) if converged: printing.print_info_line(("done.", 3), verbose) t = numpy.mat(numpy.arange(points) * step) t = t.reshape((1, points)) x = x.reshape((points, n_of_var)) sol = results.pss_solution(circ=circ, method="brute-force", period=period, outfile=outfile, t_array=t, x_array=x.T) else: print "failed." sol = None return sol
def create_ticker(symbol): """Render ticker json object from stock symbol.""" p = ticker(symbol) return p
def setUp(self): self.t = ticker.ticker()
def ac_analysis(circ, start, nsteps, stop, step_type, xop=None, mna=None,\ AC=None, Nac=None, J=None, data_filename="stdout", verbose=3): """Performs an AC analysis of the circuit (described by circ). """ if data_filename == 'stdout': verbose = 0 #check step/start/stop parameters if start == 0: printing.print_general_error("AC analysis has start frequency = 0") sys.exit(5) if start > stop: printing.print_general_error("AC analysis has start > stop") sys.exit(1) if nsteps < 1: printing.print_general_error("AC analysis has number of steps <= 1") sys.exit(1) if step_type == options.ac_log_step: omega_iter = utilities.log_axis_iterator(stop, start, nsteps) elif step_type == options.ac_lin_step: omega_iter = utilities.lin_axis_iterator(stop, start, nsteps) else: printing.print_general_error("Unknown sweep type.") sys.exit(1) tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \ options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter printing.print_info_line((tmpstr, 5), verbose) del tmpstr printing.print_info_line(("Starting AC analysis: ", 1), verbose) tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps) printing.print_info_line((tmpstr, 3), verbose) del tmpstr #It's a good idea to call AC with prebuilt MNA matrix if the circuit is big if mna is None: (mna, N) = dc_analysis.generate_mna_and_N(circ) del N mna = utilities.remove_row_and_col(mna) if Nac is None: Nac = generate_Nac(circ) Nac = utilities.remove_row(Nac, rrow=0) if AC is None: AC = generate_AC(circ, [mna.shape[0], mna.shape[0]]) AC = utilities.remove_row_and_col(AC) if circ.is_nonlinear(): if J is not None: pass # we used the supplied linearization matrix else: if xop is None: printing.print_info_line( ("Starting OP analysis to get a linearization point...", 3), verbose, print_nl=False) #silent OP xop = dc_analysis.op_analysis(circ, verbose=0) if xop is None: #still! Then op_analysis has failed! printing.print_info_line(("failed.", 3), verbose) printing.print_general_error( "OP analysis failed, no linearization point available. Quitting." ) sys.exit(3) else: printing.print_info_line(("done.", 3), verbose) printing.print_info_line(("Linearization point (xop):", 5), verbose) if verbose > 4: xop.print_short() printing.print_info_line(("Linearizing the circuit...", 5), verbose, print_nl=False) J = generate_J(xop=xop.asmatrix(), circ=circ, mna=mna, Nac=Nac, data_filename=data_filename, verbose=verbose) printing.print_info_line((" done.", 5), verbose) # we have J, continue else: #not circ.is_nonlinear() # no J matrix is required. J = 0 printing.print_info_line(("MNA (reduced):", 5), verbose) printing.print_info_line((str(mna), 5), verbose) printing.print_info_line(("AC (reduced):", 5), verbose) printing.print_info_line((str(AC), 5), verbose) printing.print_info_line(("J (reduced):", 5), verbose) printing.print_info_line((str(J), 5), verbose) printing.print_info_line(("Nac (reduced):", 5), verbose) printing.print_info_line((str(Nac), 5), verbose) sol = results.ac_solution(circ, ostart=start, ostop=stop, opoints=nsteps, stype=step_type, op=xop, outfile=data_filename) # setup the initial values to start the iteration: nv = len(circ.nodes_dict) j = numpy.complex('j') Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose) iter_n = 0 # contatore d'iterazione #printing.print_results_header(circ, fdata, print_int_nodes=options.print_int_nodes, print_omega=True) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(increments_for_step=1) tick.display(verbose > 1) x = xop for omega in omega_iter: (x, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(j*omega, AC) + J), \ Ndc=Nac, Ntran=0, circ=circuit.circuit(title="Dummy circuit for AC", filename=None), Gmin=Gmin_matrix, x0=x, \ time=None, locked_nodes=None, MAXIT=options.ac_max_nr_iter, skip_Tt=True, verbose=0) if solved: tick.step(verbose > 1) iter_n = iter_n + 1 # hooray! sol.add_line(omega, x) else: break tick.hide(verbose > 1) if solved: printing.print_info_line(("done.", 1), verbose) ret_value = sol else: printing.print_info_line(("failed.", 1), verbose) ret_value = None return ret_value
def ac_analysis(circ, start, nsteps, stop, step_type, xop=None, mna=None,\ AC=None, Nac=None, J=None, data_filename="stdout", verbose=3): """Performs an AC analysis of the circuit (described by circ). """ if data_filename == 'stdout': verbose = 0 #check step/start/stop parameters if start == 0: printing.print_general_error("AC analysis has start frequency = 0") sys.exit(5) if start > stop: printing.print_general_error("AC analysis has start > stop") sys.exit(1) if nsteps < 1: printing.print_general_error("AC analysis has number of steps <= 1") sys.exit(1) if step_type == options.ac_log_step: omega_iter = utilities.log_axis_iterator(stop, start, nsteps) elif step_type == options.ac_lin_step: omega_iter = utilities.lin_axis_iterator(stop, start, nsteps) else: printing.print_general_error("Unknown sweep type.") sys.exit(1) tmpstr = "Vea =", options.vea, "Ver =", options.ver, "Iea =", options.iea, "Ier =", \ options.ier, "max_ac_nr_iter =", options.ac_max_nr_iter printing.print_info_line((tmpstr, 5), verbose) del tmpstr printing.print_info_line(("Starting AC analysis: ", 1), verbose) tmpstr = "w: start = %g Hz, stop = %g Hz, %d steps" % (start, stop, nsteps) printing.print_info_line((tmpstr, 3), verbose) del tmpstr #It's a good idea to call AC with prebuilt MNA matrix if the circuit is big if mna is None: (mna, N) = dc_analysis.generate_mna_and_N(circ) del N mna = utilities.remove_row_and_col(mna) if Nac is None: Nac = generate_Nac(circ) Nac = utilities.remove_row(Nac, rrow=0) if AC is None: AC = generate_AC(circ, [mna.shape[0], mna.shape[0]]) AC = utilities.remove_row_and_col(AC) if circ.is_nonlinear(): if J is not None: pass # we used the supplied linearization matrix else: if xop is None: printing.print_info_line(("Starting OP analysis to get a linearization point...", 3), verbose, print_nl=False) #silent OP xop = dc_analysis.op_analysis(circ, verbose=0) if xop is None: #still! Then op_analysis has failed! printing.print_info_line(("failed.", 3), verbose) printing.print_general_error("OP analysis failed, no linearization point available. Quitting.") sys.exit(3) else: printing.print_info_line(("done.", 3), verbose) printing.print_info_line(("Linearization point (xop):", 5), verbose) if verbose > 4: xop.print_short() printing.print_info_line(("Linearizing the circuit...", 5), verbose, print_nl=False) J = generate_J(xop=xop.asmatrix(), circ=circ, mna=mna, Nac=Nac, data_filename=data_filename, verbose=verbose) printing.print_info_line((" done.", 5), verbose) # we have J, continue else: #not circ.is_nonlinear() # no J matrix is required. J = 0 printing.print_info_line(("MNA (reduced):", 5), verbose) printing.print_info_line((str(mna), 5), verbose) printing.print_info_line(("AC (reduced):", 5), verbose) printing.print_info_line((str(AC), 5), verbose) printing.print_info_line(("J (reduced):", 5), verbose) printing.print_info_line((str(J), 5), verbose) printing.print_info_line(("Nac (reduced):", 5), verbose) printing.print_info_line((str(Nac), 5), verbose) sol = results.ac_solution(circ, ostart=start, ostop=stop, opoints=nsteps, stype=step_type, op=xop, outfile=data_filename) # setup the initial values to start the iteration: nv = len(circ.nodes_dict) j = numpy.complex('j') Gmin_matrix = dc_analysis.build_gmin_matrix(circ, options.gmin, mna.shape[0], verbose) iter_n = 0 # contatore d'iterazione #printing.print_results_header(circ, fdata, print_int_nodes=options.print_int_nodes, print_omega=True) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(increments_for_step=1) tick.display(verbose > 1) x = xop for omega in omega_iter: (x, error, solved, n_iter) = dc_analysis.dc_solve(mna=(mna + numpy.multiply(j*omega, AC) + J), \ Ndc=Nac, Ntran=0, circ=circuit.circuit(title="Dummy circuit for AC", filename=None), Gmin=Gmin_matrix, x0=x, \ time=None, locked_nodes=None, MAXIT=options.ac_max_nr_iter, skip_Tt=True, verbose=0) if solved: tick.step(verbose > 1) iter_n = iter_n + 1 # hooray! sol.add_line(omega, x) else: break tick.hide(verbose > 1) if solved: printing.print_info_line(("done.", 1), verbose) ret_value = sol else: printing.print_info_line(("failed.", 1), verbose) ret_value = None return ret_value
def mdn_solver(x, mna, circ, T, MAXIT, nv, locked_nodes, time=None, print_steps=False, vector_norm=lambda v: max(abs(v)), debug=True): """ Solves a problem like F(x) = 0 using the Newton Algorithm with a variable damping td. Where: F(x) = mna*x + T + T(x) mna is the Modified Network Analysis matrix of the circuit T(x) is the contribute of nonlinear elements to KCL T -> independent sources, time invariant and invariant x is the initial guess. Every x is given by: x = x + td*dx Where td is a damping coefficient to avoid overflow in non-linear components and excessive oscillation in the very first iteration. Afterwards td=1 To calculate td, an array of locked nodes is needed. The convergence check is done this way: if (vector_norm(dx) < alpha*vector_norm(x) + beta) and (vector_norm(residuo) < alpha*vector_norm(x) + beta): beta should be the machine precision, alpha 1e-(N+1) where N is the number of the significative digits you wish to have. Parameters: x: the initial guess. If set to None, it will be initialized to all zeros. Specifying a initial guess may improve the convergence time of the algorithm and determine which solution (if any) is found if there are more than one. mna: the Modified Network Analysis matrix of the circuit, reduced, see above element_list: T: see above. MAXIT: Maximum iterations that the method may perform. nv: number of nodes in the circuit (counting the ref, 0) locked_nodes: see get_td() and dc_solve(), generated by circ.get_locked_nodes() time: the value of time to be passed to non_linear _and_ time variant elements. print_steps: show a progress indicator vector_norm: Returns a tuple with: the solution, the remaining error, a boolean that is true whenever the method exits because of a successful convergence check the number of NR iterations performed """ # OLD COMMENT: FIXME REWRITE: solve through newton # problem is F(x)= mna*x +H(x) = 0 # H(x) = N + T(x) # lets say: J = dF/dx = mna + dT(x)/dx # J*dx = -1*(mna*x+N+T(x)) # dT/dx � lo jacobiano -> g_eq (o gm) # print_steps = False # locked_nodes = get_locked_nodes(element_list) mna_size = mna.shape[0] nonlinear_circuit = circ.is_nonlinear() tick = ticker.ticker(increments_for_step=1) tick.display(print_steps) if x is None: x = numpy.mat(numpy.zeros((mna_size, 1))) # if no guess was specified, its all zeros else: if not x.shape[0] == mna_size: raise Exception, "x0s size is different from expected: " + \ str(x.shape[0]) + " " + str(mna_size) if T is None: printing.print_warning( "dc_analysis.mdn_solver called with T==None, setting T=0. BUG or no sources in circuit?" ) T = numpy.mat(numpy.zeros((mna_size, 1))) converged = False iteration = 0L while iteration < MAXIT: # newton iteration counter iteration += 1 tick.step(print_steps) if nonlinear_circuit: # build dT(x)/dx (stored in J) and Tx(x) J, Tx = build_J_and_Tx(x, mna_size, circ, time) J = J + mna else: J = mna Tx = 0 residuo = mna * x + T + Tx dx = numpy.linalg.inv(J) * (-1 * residuo) x = x + get_td(dx, locked_nodes, n=iteration) * dx if not nonlinear_circuit: converged = True break elif convergence_check(x, dx, residuo, nv - 1)[0]: converged = True break # if vector_norm(dx) == numpy.nan: #Overflow # raise OverflowError tick.hide(print_steps) if debug and not converged: # re-run the convergence check, only this time get the results # by node, so we can show to the users which nodes are misbehaving. converged, convergence_by_node = convergence_check(x, dx, residuo, nv - 1, debug=True) else: convergence_by_node = [] return (x, residuo, converged, iteration, convergence_by_node)
def shooting(circ, period, step=None, x0=None, points=None, autonomous=False, mna=None, Tf=None, D=None, outfile='stdout', vector_norm=lambda v: max(abs(v)), verbose=3): """Performs a periodic steady state analysis based on the algorithm described in Brambilla, A.; D'Amore, D., "Method for steady-state simulation of strongly nonlinear circuits in the time domain," Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol.48, no.7, pp.885-889, Jul 2001 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=933329&isnumber=20194 The results have been computed again by me, the formulas are not exactly the same, but the idea behind the shooting algorithm is. This method allows us to have a period with many points without having to invert a huge matrix (and being limited to the maximum matrix size). A tran is performed to initialize the solver. We compute the change in the last point, calculating several matrices in the process. From that, with the same matrices we calculate the changes in all points, starting from 0 (which is the same as the last one), then 1, ... Key points: - Only not autonomous circuits are supported. - The time step is constant - Implicit euler is used as DF Parameters: circ is the circuit description class period is the period of the solution mna, D, Tf are not compulsory they will be computed if they're set to None step is the time step between consecutive points points is the number of points to be used step and points are mutually exclusive options: - if step is specified, the number of points will be automatically determined - if points is set, the step will be automatically determined - if none of them is set, options.shooting_default_points will be used as points autonomous has to be False, autonomous circuits are not supported outfile is the output filename. Defaults to stdout. verbose is set to zero (print errors only) if datafilename == 'stdout'. Returns: nothing """ if outfile == "stdout": verbose = 0 printing.print_info_line( ("Starting periodic steady state analysis:", 3), verbose) printing.print_info_line(("Method: shooting", 3), verbose) if isinstance(x0, results.op_solution): x0 = x0.asmatrix() if mna is None or Tf is None: (mna, Tf) = dc_analysis.generate_mna_and_N(circ, verbose=verbose) mna = utilities.remove_row_and_col(mna) Tf = utilities.remove_row(Tf, rrow=0) elif not mna.shape[0] == Tf.shape[0]: printing.print_general_error( "mna matrix and N vector have different number of rows.") sys.exit(0) if D is None: D = transient.generate_D(circ, [mna.shape[0], mna.shape[0]]) D = utilities.remove_row_and_col(D) elif not mna.shape == D.shape: printing.print_general_error( "mna matrix and D matrix have different sizes.") sys.exit(0) (points, step) = check_step_and_points(step, points, period) print "points", points print "step", step n_of_var = mna.shape[0] locked_nodes = circ.get_locked_nodes() printing.print_info_line( ("Starting transient analysis for algorithm init: tstop=%g, tstep=%g... " % (10 * points * step, step), 3), verbose, print_nl=False) xtran = transient.transient_analysis( circ=circ, tstart=0, tstep=step, tstop=10 * points * step, method="TRAP", x0=None, mna=mna, N=Tf, D=D, use_step_control=False, outfile=outfile + ".tran", return_req_dict={"points": points}, verbose=0) if xtran is None: print "failed." return None printing.print_info_line(("done.", 3), verbose) x = [] for index in range(points): x.append(xtran[index * n_of_var:(index + 1) * n_of_var, 0]) tick = ticker.ticker(increments_for_step=1) MAass_static, MBass = build_static_MAass_and_MBass(mna, D, step) # This contains # the time invariant part, Tf # time variable component: Tt this is always the same, since the time interval is the same # this holds all time-dependent sources (both V/I). Tass_static_vector = build_Tass_static_vector( circ, Tf, points, step, tick, n_of_var, verbose) converged = False printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick.reset() tick.display(verbose > 2) iteration = 0 # newton iteration counter conv_counter = 0 while True: dx = [] Tass_variable_vector = [] MAass_variable_vector = [] for index in range(points): if index == 0: xn_minus_1 = x[points - 1] else: xn_minus_1 = x[index - 1] MAass_variable, Tass_variable = get_variable_MAass_and_Tass( circ, x[index], xn_minus_1, mna, D, step, n_of_var) MAass_variable_vector.append(MAass_variable + MAass_static) Tass_variable_vector.append( Tass_variable + Tass_static_vector[index]) dxN = compute_dxN(circ, MAass_variable_vector, MBass, Tass_variable_vector, n_of_var, points, verbose=verbose) td = dc_analysis.get_td(dxN, locked_nodes, n=-1) x[points - 1] = td * dxN + x[points - 1] for index in range(points - 1): if index == 0: dxi_minus_1 = dxN else: dxi_minus_1 = dx[index - 1] dx.append( compute_dx(MAass_variable_vector[index], MBass, Tass_variable_vector[index], dxi_minus_1)) td = dc_analysis.get_td(dx[index], locked_nodes, n=-1) x[index] = td * dx[index] + x[index] dx.append(dxN) if (vector_norm_wrapper(dx, vector_norm) < min(options.ver, options.ier) * vector_norm_wrapper(x, vector_norm) + min(options.vea, options.iea)): # \ # and (dc_analysis.vector_norm(residuo) < # options.er*dc_analysis.vector_norm(x) + options.ea): if conv_counter == 3: converged = True break else: conv_counter = conv_counter + 1 elif vector_norm(dx[points - 1]) is numpy.nan: # needs work fixme raise OverflowError # break else: conv_counter = 0 tick.step(verbose > 2) if options.shooting_max_nr_iter and iteration == options.shooting_max_nr_iter: printing.print_general_error( "Hitted SHOOTING_MAX_NR_ITER (" + str(options.shooting_max_nr_iter) + "), iteration halted.") converged = False break else: iteration = iteration + 1 tick.hide(verbose > 2) if converged: printing.print_info_line(("done.", 3), verbose) t = numpy.mat(numpy.arange(points) * step) t = t.reshape((1, points)) xmat = x[0] for index in xrange(1, points): xmat = numpy.concatenate((xmat, x[index]), axis=1) sol = results.pss_solution( circ=circ, method="shooting", period=period, outfile=outfile, t_array=t, x_array=xmat) # print_results(circ, x, fdata, points, step) else: print "failed." sol = None return sol
_dividend_up = 1 _date_up = form.getvalue('date_up') _ROI = int(_ROI) _yearROI = int(_yearROI) _yearCompany = int(_yearCompany) _price = float(_price) _dividends = int(_dividends) _total_dividends = int(_total_dividends) _dividend_up = float(_dividend_up) if type(_country) == str: _country = [_country] T = ticker() ret = T.filte( kind = _kind, \ rate = _ROI, \ year = _yearROI, \ country = _country, \ yearsaround = _yearCompany, \ pricelimit = _price, \ dividends = _dividends, \ total_dividends = _total_dividends, \ dividend_up = _dividend_up, target_date = _date_up) p = plot() for x in ret:
def dc_analysis( circ, start, stop, step, type_descr, xguess=None, data_filename="stdout", print_int_nodes=True, guess=True, stype="LINEAR", verbose=2, ): """Performs a sweep of the value of V or I of a independent source from start value to stop value using the provided step. For every circuit generated, computes the op and prints it out. This function relays on dc_analysis.op_analysis to actually solve each circuit. circ: the circuit instance to be simulated start: start value of the sweep source stop: stop value of the sweep source step: step value of the sweep source elem_type: string, may be 'vsource' or 'isource' elem_descr: the description of the element, used to recognize it in circ (i.e v<desc>) data_filename: string, filename of the output file. If set to stdout, prints to screen print_int_nodes: do it guess: op_analysis will guess to start the first NR iteration for the first point, the previsious dc is used from then on verbose: verbosity level Returns: A results.dc_solution instance, if a solution was found for at least one sweep value. None, if an error occurred (eg invalid start/stop/step values) or there was no solution for any sweep value. """ if data_filename == "stdout": verbose = 0 printing.print_info_line(("Starting DC analysis:", 2), verbose) (elem_type, elem_descr) = type_descr sweep_label = elem_type[0].upper() + elem_descr # check step/start/stop parameters if step == 0: printing.print_general_error("Can't sweep with step=0 !") sys.exit(1) if start > stop: printing.print_general_error("DC analysis has start > stop") sys.exit(1) if (stop - start) / step < 1: printing.print_general_error("DC analysis has number of steps < 1") sys.exit(1) if stype == options.dc_log_step: dc_iter = utilities.log_axis_iterator(stop, start, nsteps=int(stop - start) / step) elif stype == options.dc_lin_step: dc_iter = utilities.lin_axis_iterator(stop, start, nsteps=int(stop - start) / step) else: printing.print_general_error("Unknown sweep type: %s" % (stype,)) sys.exit(1) if elem_type != "vsource" and elem_type != "isource": printing.print_general_error( "Sweeping is possible only with voltage and current sources. (" + str(elem_type) + ")" ) sys.exit(1) source_elem = None for index in xrange(len(circ.elements)): if circ.elements[index].descr == elem_descr: if elem_type == "vsource": if isinstance(circ.elements[index], devices.vsource): source_elem = circ.elements[index] break if elem_type == "isource": if isinstance(circ.elements[index], devices.isource): source_elem = circ.elements[index] break if not source_elem: printing.print_general_error(elem_type + " element with descr. " + elem_descr + " was not found.") sys.exit(1) if isinstance(source_elem, devices.vsource): initial_value = source_elem.vdc else: initial_value = source_elem.idc # The initial value is set to None and this IS CORRECT. # op_analysis will attempt to do a smart guess, if called with x0 = None and guess=True # For each iteration over the source voltage (current) value, the last result is used as x0. # op_analysis will not attempt to guess the op if x0 is not None x = None sol = results.dc_solution(circ, start, stop, sweepvar=sweep_label, stype=stype, outfile=data_filename) printing.print_info_line(("Solving... ", 3), verbose, print_nl=False) tick = ticker.ticker(1) tick.display(verbose > 2) # sweep setup # tarocca il generatore di tensione, avvia DC silenziosa, ritarocca etc index = 0 for sweep_value in dc_iter: index = index + 1 if isinstance(source_elem, devices.vsource): source_elem.vdc = sweep_value else: source_elem.idc = sweep_value # silently calculate the op op = op_analysis(circ, x0=x, guess=guess, verbose=0) if op is None: tick.hide(verbose > 2) if not options.dc_sweep_skip_allowed: print "Could't solve the circuit for sweep value:", start + index * step solved = False break else: print "Skipping sweep value:", start + index * step continue solved = True sol.add_op(sweep_value, op) if guess: guess = False tick.step(verbose > 2) tick.hide(verbose > 2) if solved: printing.print_info_line(("done", 3), verbose) # clean up if isinstance(source_elem, devices.vsource): source_elem.vdc = initial_value else: source_elem.idc = initial_value return sol if solved else None