Exemplo n.º 1
0
 def _get_roi_cnts(img, x, y, roi_size, thresh, max_area):
     
     worm_img, roi_corner = getWormROI(img, x, y, roi_size)
     worm_mask, worm_cnt, _ = getWormMask(worm_img, 
                                          thresh, 
                                          min_blob_area=max_area
                                          )
     if worm_cnt.size > 0:
         worm_cnt += roi_corner   
     return worm_cnt 
Exemplo n.º 2
0
    def _roi2feats(block):
        #from a
        output = []
        for irow, (roi_image, roi_corner) in block:
            row_data = trajectories_data.loc[irow]
            blob_mask, blob_cnt, _ = getWormMask(
                roi_image,
                row_data['threshold'],
                strel_size,
                min_blob_area=row_data['area'] / 2,
                is_light_background=is_light_background)
            feats = _getBlobFeatures(blob_cnt, blob_mask, roi_image,
                                     roi_corner)

            output.append((irow, feats))
        return output
Exemplo n.º 3
0
    def drawThreshMask(self, worm_img, worm_qimg, row_data, read_center=True):
        #in very old versions of the tracker I didn't save the area in trajectories table,
        #let's assign a default value to deal with this cases
        if 'area' in row_data:
            min_blob_area = row_data['area'] / 2
        else:
            min_blob_area = 10

        c1, c2 = (row_data['coord_x'],
                  row_data['coord_y']) if read_center else (-1, -1)

        worm_mask, worm_cnt, _ = getWormMask(
            worm_img,
            row_data['threshold'],
            strel_size=self.strel_size,
            roi_center_x=c1,
            roi_center_y=c2,
            min_blob_area=min_blob_area,
            is_light_background=self.is_light_background)

        worm_mask = QImage(worm_mask.data, worm_mask.shape[1],
                           worm_mask.shape[0], worm_mask.strides[0],
                           QImage.Format_Indexed8)
        worm_mask = worm_mask.convertToFormat(QImage.Format_RGB32,
                                              Qt.AutoColor)
        worm_mask = QPixmap.fromImage(worm_mask)

        worm_mask = worm_mask.createMaskFromColor(Qt.black)
        p = QPainter(worm_qimg)
        p.setPen(QColor(0, 204, 102))
        p.drawPixmap(worm_qimg.rect(), worm_mask, worm_mask.rect())

        if False:
            #test skeletonization
            skeleton, ske_len, cnt_side1, cnt_side2, cnt_widths, cnt_area = \
                getSkeleton(worm_cnt, np.zeros(0), 49)
            for cnt in skeleton, cnt_side1, cnt_side2:
                p.setPen(Qt.black)
                polyline = QPolygonF()
                for point in cnt:
                    polyline.append(QPointF(*point))
                p.drawPolyline(polyline)

        p.end()
def getIndCnt(img, x, y, roi_size, thresh, max_area):
    worm_img, roi_corner = getWormROI(img, x, y, roi_size)
    worm_mask, worm_cnt, _ = getWormMask(worm_img, thresh)
    if worm_cnt.size > 0:
        worm_cnt += roi_corner   
    return worm_cnt                 
Exemplo n.º 5
0
        
        #read the data from all the worms in this frame
        frame_data = traj_group_by_frame.get_group(frame_number)
        
        #this functions crop all the ROIs of all the worms located in the image
        worms_in_frame = getAllImgROI(img, frame_data)
        
        #now i want to pass this into a binary mask with the segmentation
        labeled_mask = np.zeros_like(img, dtype=np.uint8)
        for iworm, (ind, (worm_img, roi_corner)) in enumerate(worms_in_frame.items()):
            
            row_data = trajectories_data.loc[ind]
            #here is where the ROI is really segmented. It uses threshold plus some morphology operations to clean a bit
            worm_mask, worm_cnt, cnt_area = getWormMask(worm_img, 
                                         row_data['threshold'], 
                                         strel_size=5,
                                         min_blob_area=row_data['area'] / 2, 
                                         is_light_background = True
                                         )
            #now I want to put the ROI mask into the larger labelled image
            xi,yi = roi_corner
            ss = worm_mask.shape[0]

            #here I am saving only the pixels located to the worm. 
            #This is safer than assigned the whole ROI in case of overlaping regions.
            m_roi = labeled_mask[yi:yi+ss, xi:xi+ss].view()
            m_roi[worm_mask>0] += iworm
        
    #visualize the results
    fig, axs = plt.subplots(1,2, sharex=True, sharey=True)
    axs[0].imshow(img)
    axs[1].imshow(labeled_mask)
Exemplo n.º 6
0
masked_file = "/Volumes/behavgenom_archive$/Avelino/screening/CeNDR/MaskedVideos/CeNDR_Exp_250417/BRC20067_worms10_food1-3_Set4_Pos5_Ch2_25042017_140346.hdf5"
skeletons_file = masked_file.replace('MaskedVideos', 'Results').replace('.hdf5', '_skeletons.hdf5')

with pd.HDFStore(skeletons_file, 'r') as fid:
    trajectories_data = fid['/trajectories_data']
    
roi_generator = generateMoviesROI(masked_file, trajectories_data)

worms_in_frame = next(roi_generator)

for row in worms_in_frame:
    worm_img, roi_corner = worms_in_frame[row]
    row_data = trajectories_data.loc[row]
    worm_mask, worm_cnt, _ = getWormMask(worm_img, 
                                 row_data['threshold'], 
                                 5)

    plt.figure()
    plt.subplot(1,2,1)
    plt.imshow(worm_img, interpolation=None, cmap='gray')
    plt.subplot(1,2,2)
    plt.imshow(worm_mask, interpolation=None, cmap='gray')
    break
    

#import h5py
#import pandas as pd
#import numpy as np
#from skimage.filters import threshold_otsu
#from scipy.signal import medfilt