Exemplo n.º 1
0
def tierpsy_plate_summary_augmented(fname,
                                    is_manual_index=False,
                                    delta_time=1 / 3,
                                    **fold_args):
    fps = read_fps(fname)
    data_in = read_data(fname, is_manual_index)
    if data_in is None:
        return
    timeseries_data, blob_features = data_in

    fold_index = augment_data(timeseries_data, fps=fps, **fold_args)
    all_summary = []
    for i_fold, ind_fold in enumerate(fold_index):

        timeseries_data_r = timeseries_data[ind_fold].reset_index(drop=True)
        blob_features_r = blob_features[ind_fold].reset_index(drop=True)

        plate_feats = get_summary_stats(timeseries_data_r, fps,
                                        blob_features_r, delta_time)
        plate_feats = pd.DataFrame(plate_feats).T
        plate_feats.insert(0, 'i_fold', i_fold)

        all_summary.append(plate_feats)

    all_summary = pd.concat(all_summary, ignore_index=True)

    return all_summary
def tierpsy_plate_summary_augmented(fname,
                                    filter_params,
                                    time_windows,
                                    time_units,
                                    only_abs_ventral=False,
                                    selected_feat=None,
                                    is_manual_index=False,
                                    delta_time=1 / 3,
                                    **fold_args):

    fps = read_fps(fname)
    data_in = read_data(fname, filter_params, time_windows, time_units, fps,
                        is_manual_index)
    if data_in is None:
        return [pd.DataFrame() for iwin in range(len(time_windows))]
    timeseries_data, blob_features = data_in

    # initialize list of summaries for all time windows
    all_summaries_list = []

    # loop over time windows
    for iwin, window in enumerate(time_windows):
        if timeseries_data[iwin].empty:
            all_summary = pd.DataFrame([])
        else:
            fold_index = augment_data(timeseries_data[iwin],
                                      fps=fps,
                                      **fold_args)
            # initialize list of augmented plate summaries for given time window
            all_summary = []
            # loop over folds
            for i_fold, ind_fold in enumerate(fold_index):

                timeseries_data_r = timeseries_data[iwin][
                    ind_fold].reset_index(drop=True)
                blob_features_r = blob_features[iwin][ind_fold].reset_index(
                    drop=True)

                plate_feats = get_summary_stats(
                    timeseries_data_r,
                    fps,
                    blob_features_r,
                    delta_time,
                    only_abs_ventral=only_abs_ventral,
                    selected_feat=selected_feat)

                plate_feats['n_skeletons'] = count_skeletons(timeseries_data_r)
                plate_feats = pd.DataFrame(plate_feats).T
                plate_feats.insert(0, 'i_fold', i_fold)

                all_summary.append(plate_feats)

            # concatenate all folds in given time window into one dataframe
            all_summary = pd.concat(all_summary, ignore_index=True, sort=False)

        # add dataframe to the list of summaries for all time windows
        all_summaries_list.append(all_summary)

    return all_summaries_list
Exemplo n.º 3
0
def ow_plate_summary_augmented(fname, **fold_args):
    #NOTE: I will only augment the timeseries features. 
    #It is not trivial to include the event features sampling over time.
    
    fps = read_fps(fname)
    with pd.HDFStore(fname, 'r') as fid:
        features_timeseries = fid['/features_timeseries']
    
    fold_index = augment_data(features_timeseries, fps=fps, **fold_args)
    
    valid_order = None
    wStats = WormStats()
    
    all_summary = []
    for i_fold, ind_fold in enumerate(fold_index):
        timeseries_data_r = features_timeseries[ind_fold].reset_index(drop=True)
        
        
        all_feats = {}
        for cc in timeseries_data_r:
            all_feats[cc] = timeseries_data_r[cc].values
        exp_feats = wStats.getWormStats(all_feats, np.nanmean)
        exp_feats = pd.DataFrame(exp_feats)
        
        if valid_order is None:
            #only calculate this the first time...
            valid_order = [x for x in exp_feats.columns if x not in wStats.extra_fields]
        exp_feats = exp_feats.loc[:, valid_order]
        
        exp_feats.insert(0, 'i_fold', i_fold)
        
        
        all_summary.append(exp_feats)
    
    all_summary = pd.concat(all_summary, ignore_index=True)
   
    return all_summary