Exemplo n.º 1
0
    def setUp(self):
        self.network = copy.deepcopy(network_lattice_1x1_small)

        # generate synthetic origins
        obs1 = tigernet.generate_obs(5, self.network.s_data)
        obs1["obs_id"] = ["a", "b", "c", "d", "e"]
        # generate synthetic destinations
        obs2 = tigernet.generate_obs(3, self.network.s_data, seed=1)
        obs2["obs_id"] = ["z", "y", "x"]

        # associate origins with the network
        args = self.network, obs1.copy()
        kwargs = {"df_name": "obs1", "df_key": "obs_id", "snap_to": "nodes"}
        self.net_obs1 = tigernet.Observations(*args, **kwargs)

        # associate destinations with the network
        args = self.network, obs2.copy()
        kwargs = {"df_name": "obs2", "df_key": "obs_id", "snap_to": "nodes"}
        self.net_obs2 = tigernet.Observations(*args, **kwargs)
    def setUp(self):
        network = copy.deepcopy(network_empirical_simplified)

        # generate synthetic observations
        obs = tigernet.generate_obs(500, network.s_data)
        obs["obs_id"] = obs.index

        # associate observations with the network
        args = network, obs.copy()
        kwargs = {"df_name": "obs1", "df_key": "obs_id", "snap_to": "nodes"}
        self.net_obs = tigernet.Observations(*args, **kwargs)
    def setUp(self):
        network = copy.deepcopy(network_lattice_1x1_geomelem)

        # generate synthetic observations
        obs = tigernet.generate_obs(5, network.s_data)
        obs["obs_id"] = ["a", "b", "c", "d", "e"]

        # associate observations with the network
        args = network, obs.copy()
        kwargs = {"df_name": "obs1", "df_key": "obs_id"}
        self.net_obs = tigernet.Observations(*args, **kwargs)
    def setUp(self):
        network = copy.deepcopy(network_empirical_simplified)

        # generate synthetic observations
        obs = tigernet.generate_obs(500, network.s_data)
        obs["obs_id"] = obs.index

        # associate observations with the network
        args = network, obs.copy()
        kwargs = {"df_name": "obs1", "df_key": "obs_id", "snap_to": "nodes"}
        kwargs.update({"restrict_col": "MTFCC"})
        kwargs.update({"remove_restricted": ["S1100", "S1630", "S1640"]})
        self.net_obs = tigernet.Observations(*args, **kwargs)
    def setUp(self):
        network = copy.deepcopy(network_lattice_1x1_geomelem)
        network.s_data.loc[1, "MTFCC"] = "S1100"
        network.s_data.loc[3, "MTFCC"] = "S1100"

        # generate synthetic observations
        obs = tigernet.generate_obs(5, network.s_data)
        obs["obs_id"] = ["a", "b", "c", "d", "e"]

        # associate observations with the network
        args = network, obs.copy()
        kwargs = {"df_name": "obs1", "df_key": "obs_id", "snap_to": "nodes"}
        kwargs.update({"restrict_col": "MTFCC"})
        kwargs.update({"remove_restricted": ["S1100", "S1630", "S1640"]})
        self.net_obs = tigernet.Observations(*args, **kwargs)
Exemplo n.º 6
0
    def test_generate_observations_totalbounds(self):
        n_obs = 5
        obs = tigernet.generate_obs(n_obs, self.network.s_data)
        known_n_obs = n_obs
        observed_n_obs = obs.shape[0]
        self.assertEqual(observed_n_obs, known_n_obs)

        known_coords = numpy.array([
            (4.939321535345923, 6.436704297351775),
            (5.4248703846447945, 4.903948646972072),
            (3.8128931940501425, 5.813047017599905),
            (3.9382849013642325, 8.025957007038718),
            (8.672964844509263, 3.4509736694319995),
        ])
        observed_coords = numpy.array([(p.x, p.y) for p in obs.geometry])
        numpy.testing.assert_array_almost_equal(observed_coords, known_coords)
Exemplo n.º 7
0
    def test_generate_observations_inbuffer(self):
        n_obs = 5
        obs = tigernet.generate_obs(n_obs, self.network.s_data, near_net=0.5)
        known_n_obs = n_obs
        observed_n_obs = obs.shape[0]
        self.assertEqual(observed_n_obs, known_n_obs)

        known_coords = numpy.array([
            (4.939321535345923, 6.436704297351775),
            (5.4248703846447945, 4.903948646972072),
            (7.125525342743981, 4.76005427777614),
            (4.153314260276387, 7.024762586578099),
            (4.696634895750645, 3.731957459914712),
        ])
        observed_coords = numpy.array([(p.x, p.y) for p in obs.geometry])
        numpy.testing.assert_array_almost_equal(observed_coords, known_coords)
Exemplo n.º 8
0
    def test_generate_observations_inbuffer(self):
        n_obs = 500
        obs = tigernet.generate_obs(n_obs, self.network.s_data, near_net=30)
        known_n_obs = n_obs
        observed_n_obs = obs.shape[0]
        self.assertEqual(observed_n_obs, known_n_obs)

        known_coords = numpy.array([
            (622571.9108776418, 166711.9648736473),
            (624474.552580049, 165130.38564160923),
            (623803.6385443554, 166644.26001242414),
            (622876.6555154349, 165227.52219813256),
            (623400.7775349629, 166023.94388077687),
        ])
        observed_coords = numpy.array([(p.x, p.y) for p in obs.geometry])[:5]
        numpy.testing.assert_array_almost_equal(observed_coords,
                                                known_coords,
                                                decimal=DECIMAL)
Exemplo n.º 9
0
    def test_generate_observations_totalbounds(self):

        n_obs = 500
        obs = tigernet.generate_obs(n_obs, self.network.s_data)
        known_n_obs = n_obs
        observed_n_obs = obs.shape[0]
        self.assertEqual(observed_n_obs, known_n_obs)

        known_coords = numpy.array([
            (622974.1796832045, 166162.55760926675),
            (623169.2985719838, 165632.6814708112),
            (622521.5219401979, 165946.95826632337),
            (622571.9108776418, 166711.9648736473),
            (624474.552580049, 165130.38564160923),
        ])
        observed_coords = numpy.array([(p.x, p.y) for p in obs.geometry])[:5]
        numpy.testing.assert_array_almost_equal(observed_coords,
                                                known_coords,
                                                decimal=DECIMAL)