Exemplo n.º 1
0
def test_add_batch_dim():
    add_batch = make_preprocessing([ADD_BATCH_DIM])

    data = xr.DataArray(np.arange(18).reshape(2, 3, 3), dims=("c", "x", "y"))
    result = add_batch(data)
    assert result.shape == (1, 2, 3, 3)
    assert result.dims == ("b", "c", "x", "y")
Exemplo n.º 2
0
def test_binarize():
    binarize_spec = Preprocessing(name="binarize", kwargs={"threshold": 14})
    data = xr.DataArray(np.arange(30).reshape(2, 3, 5), dims=("x", "y", "c"))
    expected = xr.zeros_like(data)
    expected[{"x": slice(1, None)}] = 1
    preprocessing = make_preprocessing([binarize_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemplo n.º 3
0
def test_scale_linear_no_channel():
    spec = Preprocessing(name="scale_linear",
                         kwargs={
                             "offset": 1,
                             "gain": 2,
                             "axes": "yx"
                         })
    data = xr.DataArray(np.arange(6).reshape(2, 3), dims=("x", "y"))
    expected = xr.DataArray(np.array([[1, 3, 5], [7, 9, 11]]), dims=("x", "y"))
    preprocessing = make_preprocessing([spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemplo n.º 4
0
def test_scale_linear():
    spec = Preprocessing(name="scale_linear",
                         kwargs={
                             "offset": [1, 2, 42],
                             "gain": [1, 2, 3],
                             "axes": "yx"
                         })
    data = xr.DataArray(np.arange(6).reshape(1, 2, 3), dims=("x", "y", "c"))
    expected = xr.DataArray(np.array([[[1, 4, 48], [4, 10, 57]]]),
                            dims=("x", "y", "c"))
    preprocessing = make_preprocessing([spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemplo n.º 5
0
def test_zero_mean_unit_variance_preprocessing():
    zero_mean_spec = Preprocessing(name="zero_mean_unit_variance", kwargs={})
    data = xr.DataArray(np.arange(9).reshape(3, 3), dims=("x", "y"))
    expected = xr.DataArray(
        np.array([
            [-1.54919274, -1.16189455, -0.77459637],
            [-0.38729818, 0.0, 0.38729818],
            [0.77459637, 1.16189455, 1.54919274],
        ]),
        dims=("x", "y"),
    )
    preprocessing = make_preprocessing([zero_mean_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemplo n.º 6
0
def test_combination_of_preprocessing_steps_with_dims_specified():
    zero_mean_spec = Preprocessing(name="zero_mean_unit_variance",
                                   kwargs={"axes": ("x", "y")})
    data = xr.DataArray(np.arange(18).reshape(2, 3, 3), dims=("c", "x", "y"))

    expected = xr.DataArray(
        np.array([
            [-1.54919274, -1.16189455, -0.77459637],
            [-0.38729818, 0.0, 0.38729818],
            [0.77459637, 1.16189455, 1.54919274],
        ]),
        dims=("x", "y"),
    )

    preprocessing = make_preprocessing([ADD_BATCH_DIM, zero_mean_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result[0][0])
Exemplo n.º 7
0
def test_unknown_preprocessing_should_raise():
    mypreprocessing = Preprocessing(name="mycoolpreprocessing",
                                    kwargs={"axes": ("x", "y")})
    with pytest.raises(NotImplementedError):
        make_preprocessing([mypreprocessing])