Exemplo n.º 1
0
    def _initialize_stat_values_store_if_needed(
            self, shape: Tuple[int, ...]) -> None:
        """
        Initialize storage for the benchmark statistics if it wasn't created yet.
        :param shape: Shape of the stats map.
        """

        if self.__tiledb_stats_array is not None and tiledb.array_exists(
                self.__tiledb_stats_array):
            return
        # Create array with one dense dimension to store read statistics from the latest benchmark run.
        dom = tiledb.Domain(
            tiledb.Dim(name='n',
                       domain=(0, shape[0] - 1),
                       tile=shape[0] - 1,
                       dtype=np.int64),
            tiledb.Dim(name='f',
                       domain=(0, shape[1] - 1),
                       tile=(shape[1] - 1),
                       dtype=np.int64))
        # Schema contains one attribute for READ count
        schema = tiledb.ArraySchema(
            domain=dom,
            sparse=False,
            attrs=[tiledb.Attr(name='read', dtype=np.int32)])
        # Create the (empty) array on disk.
        tiledb.DenseArray.create(self.__tiledb_stats_array, schema)
        # Fill with zeroes
        with tiledb.DenseArray(self.__tiledb_stats_array, mode='w') as rr:
            zero_data = np.zeros(shape, dtype=np.int32)
            rr[:] = zero_data
Exemplo n.º 2
0
def fragments_copy(uri_src, uri_dst, time_start, time_end, verbose, dry_run, force):
    """
    (POSIX only). Copy a range of fragments from time-start to time-end (inclusive)
    in an array located at uri-src to an array at uri-dst. If the array does not
    exist, it will be created. The range may be formatted in UNIX seconds or ISO 8601.
    """
    if not force:
        prompt_poweruser()

    if time_start:
        time_start = to_unix_time(time_start)

    if time_end:
        time_end = to_unix_time(time_end)

    copy_fragments_to_array = (
        tiledb.copy_fragments_to_existing_array
        if tiledb.array_exists(uri_dst)
        else tiledb.create_array_from_fragments
    )

    copy_fragments_to_array(
        uri_src,
        uri_dst,
        timestamp_range=(time_start, time_end),
        verbose=verbose,
        dry_run=dry_run,
    )
Exemplo n.º 3
0
    def test_save_model_to_tiledb_array_without_compile_functional(self):
        functional_model = testing_utils.get_small_functional_mlp(
            num_hidden=1, num_classes=2, input_dim=3)

        tiledb_uri = os.path.join(self.get_temp_dir(), "model_array")
        tiledb_model_obj = TensorflowTileDB(uri=tiledb_uri)
        tiledb_model_obj.save(model=functional_model, include_optimizer=False)
        self.assertTrue(tiledb.array_exists(tiledb_uri))
Exemplo n.º 4
0
    def _initialize_stat_values_store_if_needed_read_obs_space(
            self, registry_read: PRegistryReadClient) -> None:
        """
        Initialize the TileDB stats array with no pre-supplied observations shape. It will retrieve, observations, and
        create a new array based on that. Only use in cases where it's uncertain if the array was initialized or not but
        there is no observation space yet.
        :param registry_read: Read-only client for the registry.
        """
        if self.__tiledb_stats_array is not None and tiledb.array_exists(
                self.__tiledb_stats_array):
            return

        agent_nodes, fragments, obs = self.get_full_allocation_observation(
            registry_read=registry_read)
        # Expand observation space per agent to include read frequencies from the latest benchmark run or with
        # default values if no benchmark values yet available
        self._initialize_stat_values_store_if_needed(obs.shape)
Exemplo n.º 5
0
    def test_save_model_to_tiledb_array(self, tmpdir, api, loss, optimizer,
                                        metrics):
        model = (api(num_hidden=1, num_classes=2, input_dim=3)
                 if api != ConfigSubclassModel else api(
                     hidden_units=[16, 16, 10]))

        tiledb_uri = os.path.join(tmpdir, "model_array")

        # Compiles the model if optimizer is present
        if optimizer:
            model.compile(loss=loss, optimizer=optimizer, metrics=[metrics])

        if not model.built:
            model.build(tuple(np.random.randint(20, size=2)))
        tiledb_model_obj = TensorflowKerasTileDBModel(uri=tiledb_uri,
                                                      model=model)
        tiledb_model_obj.save(include_optimizer=True if optimizer else False)
        assert tiledb.array_exists(tiledb_uri)