def render_progression(progression, voicing): global time for i, p in enumerate(progression): chord = key_chords[p] # root, third, fifth = chord.notes timeline.add(time + i * 2.0 * rhythm_mod, Hit(chord.notes[voicing[i][0]], 2.0 * rhythm_mod)) timeline.add(time + i * 2.0 * rhythm_mod, Hit(chord.notes[voicing[i][1]], 2.0 * rhythm_mod))
def render_melody(rhythm, melody): global time print("r = " + str(rhythm)) for r, m in zip(rhythm, melody): # print("len(chords) = %s, m = %s" %(len(key_chords), m)) note = key_chords[m] timeline.add(time, Hit(note.notes[0], r * 2.0 * rhythm_mod)) time += (r * 2.0 * rhythm_mod)
timeline = Timeline() note = key # Semi-randomly queue notes from the scale for i in range(64): if note.index > 50 or note.index < 24: # If note goes out of comfort zone, randomly place back at base octave note = scale.get(random.randrange(4) * 2) note = note.at_octave(key.octave) else: # Transpose the note by some small random interval note = scale.transpose(note, random.choice((-2, -1, 1, 2))) length = random.choice((0.125, 0.125, 0.25)) timeline.add(time, Hit(note, length + 0.125)) time += length # Resolve note = scale.transpose(key, random.choice((-1, 1, 4))) timeline.add(time, Hit(note, 0.75)) # Tension timeline.add(time + 0.5, Hit(key, 4.0)) # Resolution print("Rendering audio...") data = timeline.render() print("Applying chorus effect...") data = effect.chorus(data, freq=3.14159)
chords = [[], [Note("C3"),Note("E3"),Note("G3")], [Note("D3"),Note("F3"),Note("A3")], [Note("E3"),Note("G3"),Note("B3")], [Note("F3"),Note("A3"),Note("C4")], [Note("G3"),Note("B3"),Note("D4")], [Note("A3"),Note("C4"),Note("E4")], [Note("B3"),Note("D4"),Note("F4")], [Note("C4"),Note("E4"),Note("G4")], ] bassNote = bassProgression for x in range(0,8): timeline.add(x*.5,Hit(bassProgression[x],1)) time = 0.0 def getChord(inputNote): returnChord = [] print inputNote.note if inputNote.note == "c": returnChord = chords[1] elif inputNote.note == "d": returnChord = chords[2] elif inputNote.note == "e": returnChord = chords[3]
progressions.append(make_progression_part()) voicings.append(make_voicing_part(len(progressions[-1]))) rhythms.append(make_rhythm_part()) melodies.append(make_melody_part(len(rhythms[-1]))) # Render the progressions and melodies in patterns song_length = randint(2, 3) * complexity // 2 for _ in range(song_length): i = randint(0, complexity - 1) render_progression(progressions[i], voicings[i]) j = randint(0, complexity - 1) render_melody(rhythms[j], melodies[j]) # Strum out root chord to finish chord = key_chords[0] timeline.add(time + 0.0, Hit(chord.notes[0], 4.0)) timeline.add(time + 0.1, Hit(chord.notes[1], 4.0)) timeline.add(time + 0.2, Hit(chord.notes[2], 4.0)) timeline.add(time + 0.3, Hit(chord.notes[1].transpose(12), 4.0)) timeline.add(time + 0.4, Hit(chord.notes[2].transpose(12), 4.0)) timeline.add(time + 0.5, Hit(chord.notes[0].transpose(12), 4.0)) print("Rendering audio...") data = timeline.render() # Reduce volume to 25% data = data * 0.25 #print("Playing audio...") print("Saving audio to " + filepath)
if note.index == "G3": note = random.choice(G3, A3, F3) if note.index == "A3": note = random.choice(A3, B3, G3) if note.index == "B3": note = random.choice(B3, C3, A3) if note.index == "C4": note = random.choice(B3, C4) print "Playing audio..." data = timeline.render() playback.play(data) print "Done!" timeline.add(time, Hit(note, 1)) # Resolve print "Rendering audio..." print "Playing audio..." playback.play(data) print "Done!"
def add(t, sound): timeline.add(t, Hit(sound_string[sound], 1, sound))
noteAbove = "c%i" % (inputNote.octave + 1) return(random.choice([Note(noteBelow),Note(noteAbove)])) for w in range(0,22): if w == 0: melodyArray = [] bassArray = [] bassArray.append(Note("C2")) melodyArray.append(Note(scale.transpose(bassArray[0],9))) if (w % 2 == 0): timeline.add((w/2)*.5,Hit(bassArray[w/2],1)) bassNote = bassArray[w/2] #Define Melody Array bassArray.append(nextBassNote(bassArray[w/2-1])) melodyArray.append(nextNote(melodyArray[w-1],bassArray[w%2])) time = 0.0 #Populate Timeline for note in melodyArray:
def main(argv): try: opts, args = getopt.getopt(argv, "hdsm", ['help', 'debug', 'startup', 'morning']) except getopt.GetoptError: usage() sys.exit(2) global _debug _debug = 0 morning = False for opt, arg in opts: if opt in ("-h", "--help"): usage() sys.exit() if opt in ("-m", "--morning"): morning = True _debug = 1 if opt == '-d': _debug = 1 if opt in ("-s", "--startup"): import time time.sleep(90) #os.system("/usr/bin/tvservice -o") # Increase chance of singing at sunrise/sunset import ephem birdcage = ephem.Observer() birdcage.lat = '51.497517' birdcage.lon = '0.080380' birdcage.date = str(datetime.datetime.now()) birdcage.elevation = 5 sun = ephem.Sun() next_sunrise = birdcage.next_rising(sun) early_next_sunrise = ephem.Date(next_sunrise - 15 * ephem.minute) late_next_sunrise = ephem.Date(next_sunrise + 15 * ephem.minute) next_sunset = birdcage.next_setting(sun) early_next_sunset = ephem.Date(next_sunset - 15 * ephem.minute) late_next_sunset = ephem.Date(next_sunset + 15 * ephem.minute) sunrise = False; sunset = False; if (birdcage.date > early_next_sunrise and birdcage.date < late_next_sunrise): #print 'Sunrise roll' sunrise = true; dice_roll = random.choice([1,2,3,4,5,6,7,8]) elif (birdcage.date > early_next_sunset and birdcage.date < late_next_sunset): #print 'Sunset roll' sunset = true; dice_roll = random.choice([1,2,3,4,5,6,7,8]) else: dice_roll = random.choice([1,2,3,4,5,6]) if (dice_roll < 5 and _debug <> 1): #print "Going back to sleep" sys.exit() # We're alive, import what else we need now sys.path.append(os.path.join(os.path.dirname(__file__), 'python-musical')) from musical.theory import Note, Scale, Chord from musical.audio import effect, playback from timeline import Hit, Timeline # Define key and scale key = Note((random.choice(Note.NOTES), random.choice([2,3,3]))) scales = ['major', 'minor', 'melodicminor', 'harmonicminor', 'pentatonicmajor', 'bluesmajor', 'pentatonicminor', 'bluesminor', 'augmented', 'diminished', 'wholehalf', 'halfwhole', 'augmentedfifth', 'japanese', 'oriental', 'ionian', 'phrygian', 'lydian', 'mixolydian', 'aeolian', 'locrian'] random.shuffle(scales) scale = Scale(key, random.choice(scales)) #print key #print scale # Grab progression chords from scale starting at the octave of our key progression = Chord.progression(scale, base_octave=key.octave) time = 0.0 # Keep track of correct note placement time in seconds timeline = Timeline() # Pick a notes from a chord randomly chosen from a list of notes in this progression chord = progression[ random.choice(range(len(progression)-1)) ] notes = chord.notes melodies = [ [0.8, 0.2], [0.4, 0.2], [0.2, 0.8], [0.2, 0.4], [0.6, 0.2], [0.4, 0.4, 0.2], [0.6, 0.1, 0.1], [0.8, 0.1, 0.2], [0.2, 0.2, 0.2], [0.2, 0.4, 0.2], [1.0, 0.1, 0.2, 0.1, 0.2, 0.10, 0.1], [0.8, 0.4, 0.1, 0.2, 0.4, 0.1, 0.2], [0.8, 0.4, 0.4, 0.2, 0.2, 0.1, 0.1], [0.4, 0.0, 0.1, 0.1, 0.2, 0, 0.1, 0.4], [0.1, 0.1, 0.1, 0.0, 0.2, 0.0, 0.1, 0.2, 0.4], [0.8, 0.4, 0.1, 0.4, 0.2, 0.2, 0.1, 0.2, 0.8, 0.1, 0.4, 0.1], [0.2, 0.2, 0.4, 0.2, 0.1, 0.1, 0.0, 0.2], [1.0, 0.1, 0.2, 0.1, 0.2, 0.2], [0.2, 0.1, 0.2, 0.4, 0.1, 0.2, 0.4], [0.4, 0.1, 0.4, 0.2, 0.4, 0.1, 0.4, 0.2], [0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.2], [0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.2, 0.0], [0.1, 0.0, 0.1, 0.0, 0.1, 0.0, 0.2, 0.0, 0.2, 0.0, 0.1, 0.1, 0.3], ] if sunrise or sunset: random_melody = random.choice(melodies[0:12]) else: random_melody = random.choice(melodies) # Testing a new melody-generation idea - duncan 11/4/20 # - needs more work, disabling for now - 12/4/20 #random_melody = [] #melody_length = random.randrange(1, 12) # #for i in range(0, melody_length): # random_melody.append( round(random.uniform(0.1, 0.6), 1) ) # test end if morning: random_melody = melodies[-1] print random_melody last_interval = 0.0 last_transpose = 0 for i, interval in enumerate(random_melody): random_note = random.choice(notes) # the first note should be high # identical intervals should often hold the same pitch # otherwise, pick a random pitch if i == 0: random_transpose = random.choice([8, 12]) elif (last_interval == interval): if random.choice([0,1,2]) == 2: random_transpose = last_transpose else: random_transpose = 0 else: random_transpose = random.choice([0,2,4,6,8,10,12]) last_interval = interval last_transpose = random_transpose note = random_note.transpose(random_transpose) #print note # favour queued notes, but occasionally overlap them too if (random.choice([1,2,3,4,5,6]) > 2): time = time + interval timeline.add(time, Hit(note, interval)) else: timeline.add(time, Hit(note, interval)) time = time + interval #print "Rendering audio..." data = timeline.render() # Reduce volume to 50% data = data * 0.5 print "Playing audio..." if morning: for i in range(2): playback.play(data) else: for i in range(random.choice([1,2])): playback.play(data)
def make_sound(type): mytimeline = Timeline() mytimeline.add(0, Hit(type, 1, sound_string[type])) data = mytimeline.render() playback.play(data)
def get_timeline_from_hlr(hlr): timeline = Timeline() for t, chord, duration in hlr: for note in chord.notes: timeline.add(t, Hit(note, duration)) return timeline
textInput = input('please input some text: ') print('textInput:', textInput) # encode in a bytearray textBytes = textInput.encode() print('textBytes', textBytes) # hash the text textHash = hashlib.md5() textHash.update(textBytes) digest = textHash.digest() print('digest:', digest) # convert bytes to integers integers = [n for n in digest] print(integers) for char in digest: print(char) # play the notes time = 0.0 timeline = Timeline() for pitch in integers: print(pitch) timeline.add(time, Hit(Note(pitch % 32 + 24), 0.6)) time += 0.6 data = timeline.render() playback.play(data)