Exemplo n.º 1
0
        def generate_reference_ensemble():
            intg.reset(sess)
            rs = ReservoirSampler(reference_generator(), reservoir_size)
            rs.sample_all()

            ensemble = []
            for x, t in rs.R:
                ensemble.append(x)
            stacked_ensemble = np.stack(ensemble, axis=0)
            ensemble_ph = tf.placeholder(shape=(reservoir_size, num_atoms, 3),
                                         dtype=np.float64)

            ref_d2ij_op = observable.sorted_squared_distances(ensemble_ph)
            return ref_d2ij_op, stacked_ensemble, ensemble_ph
Exemplo n.º 2
0
    def test_dense_sorted_dij(self):
        """
        Testing sorted distance matrix observables implemented correctly
        """
        x0 = np.array([
            [-0.0070, -0.0100, 0.0000],
            [-0.1604, 0.4921, 0.0000],
            [0.5175, 0.0128, 0.0000],
        ],
                      dtype=np.float64)

        all_xs = []
        n_confs = 5
        for p in range(n_confs):
            rand_dx = np.random.rand(3, 3) / 10
            all_xs.append(x0 + rand_dx)

        stacked_dijs = []

        for x in all_xs:
            # loop over the atoms
            dij = np.zeros(shape=(3, 3), dtype=np.float64)
            for a_idx, a in enumerate(x):
                for b_idx, b in enumerate(x):
                    dij[a_idx][b_idx] = np.sum(np.power(a - b, 2), axis=-1)
            stacked_dijs.append(dij)

        stacked_dijs = np.stack(stacked_dijs, axis=-1)
        reference_sorted_dijs = np.sort(stacked_dijs, axis=-1)

        x_ph = tf.placeholder(shape=(n_confs, 3, 3), dtype=np.float64)

        test_sorted_dijs_op = observable.sorted_squared_distances(x_ph)
        dOdx_op = tf.gradients(test_sorted_dijs_op, x_ph)

        sess = tf.Session()
        test_sorted_dijs, test_grads = sess.run(
            [test_sorted_dijs_op, dOdx_op],
            feed_dict={x_ph: np.array(all_xs, dtype=np.float64)})

        # test that distances are equivalent
        np.testing.assert_almost_equal(reference_sorted_dijs,
                                       test_sorted_dijs,
                                       decimal=15)

        assert test_grads is not None
        assert not np.any(np.isnan(test_grads))
Exemplo n.º 3
0
    def test_optimize_ensemble(self):
        """
        Testing that we can optimize ensembles with different integrator and ff settings relative to a canonical one.
        """

        # 1. Generate a water ensemble by doing 5000 steps of MD starting from an idealized geometry.
        # 2. Reservoir sample along the trajectory.
        # 3. Generate a loss function used sum of square distances.
        # 4. Compute parameter derivatives.

        x_opt = np.array([
            [-0.0070, -0.0100, 0.0000],
            [-0.1604, 0.4921, 0.0000],
            [0.5175, 0.0128, 0.0000],
        ],
                         dtype=np.float64)  # idealized geometry

        x_opt.setflags(write=False)

        masses = np.array([8.0, 1.0, 1.0], dtype=np.float64)
        num_atoms = len(masses)

        ideal_bond = 0.52
        ideal_angle = 1.81

        bond_params = [
            tf.get_variable("OH_kb",
                            shape=tuple(),
                            dtype=tf.float64,
                            initializer=tf.constant_initializer(100.0)),
            tf.get_variable("OH_b0",
                            shape=tuple(),
                            dtype=tf.float64,
                            initializer=tf.constant_initializer(ideal_bond)),
        ]

        hb = bonded_force.HarmonicBondForce(
            params=bond_params,
            bond_idxs=np.array([[0, 1], [0, 2]], dtype=np.int32),
            param_idxs=np.array([[0, 1], [0, 1]], dtype=np.int32))

        angle_params = [
            tf.get_variable("HOH_ka",
                            shape=tuple(),
                            dtype=tf.float64,
                            initializer=tf.constant_initializer(75.0)),
            tf.get_variable("HOH_a0",
                            shape=tuple(),
                            dtype=tf.float64,
                            initializer=tf.constant_initializer(ideal_angle)),
        ]

        ha = bonded_force.HarmonicAngleForce(
            params=angle_params,
            angle_idxs=np.array([[1, 0, 2]], dtype=np.int32),
            param_idxs=np.array([[0, 1]], dtype=np.int32))

        # standard MD used to generate a canonical ensemble
        friction = 1.0
        dt = 0.0025
        temp = 300.0
        num_steps = 20000

        x_ph = tf.placeholder(name="input_geom",
                              dtype=tf.float64,
                              shape=(num_atoms, 3))
        intg = integrator.LangevinIntegrator(masses, x_ph, [hb, ha], dt,
                                             friction, temp)

        reservoir_size = 200

        ref_dx_op, _ = intg.step_op(inference=True)

        sess = tf.Session()
        sess.run(tf.initializers.global_variables())

        def reference_generator():
            x = np.copy(
                x_opt
            )  # (ytz): Do not remove this copy else you'll spend hours tracking down bugs.
            for step in range(num_steps):
                if step % 100 == 0:
                    print(step)
                dx_val = sess.run(ref_dx_op, feed_dict={x_ph: x})
                x += dx_val
                # this copy is important here, otherwise we're just adding the same reference
                # since += modifies the object in_place
                yield np.copy(x), step  # wip: decouple

        def generate_reference_ensemble():
            intg.reset(sess)
            rs = ReservoirSampler(reference_generator(), reservoir_size)
            rs.sample_all()

            ensemble = []
            for x, t in rs.R:
                ensemble.append(x)
            stacked_ensemble = np.stack(ensemble, axis=0)
            ensemble_ph = tf.placeholder(shape=(reservoir_size, num_atoms, 3),
                                         dtype=np.float64)

            ref_d2ij_op = observable.sorted_squared_distances(ensemble_ph)
            return ref_d2ij_op, stacked_ensemble, ensemble_ph

        a1, inp1, ensemble_ph1 = generate_reference_ensemble()
        a2, inp2, ensemble_ph2 = generate_reference_ensemble()

        # compute MSE of two _identical_ simulations except for the RNG
        loss = tf.reduce_sum(tf.pow(a1 - a2, 2)) / reservoir_size  # 0.003

        mutual_MSE = sess.run(loss,
                              feed_dict={
                                  ensemble_ph1: inp1,
                                  ensemble_ph2: inp2
                              })

        print("Optimal MSE", mutual_MSE)

        # on average, two identical ensembles should yield the same result
        assert mutual_MSE < 0.05

        # Use completely different integration parameters
        friction = 10.0
        dt = 0.05
        temp = 100
        num_steps = 500  # we need to make the num_steps variable and only stop once we've converged

        x_ph = tf.placeholder(name="input_geom",
                              dtype=tf.float64,
                              shape=(num_atoms, 3))

        with tf.variable_scope("bad"):
            bad_intg = integrator.LangevinIntegrator(masses,
                                                     x_ph, [hb, ha],
                                                     dt,
                                                     friction,
                                                     temp,
                                                     buffer_size=None)

        bad_dx_op, bad_dxdp_op = bad_intg.step_op()

        d0_ph = tf.placeholder(shape=tuple(), dtype=tf.float64)
        d1_ph = tf.placeholder(shape=tuple(), dtype=tf.float64)
        d2_ph = tf.placeholder(shape=tuple(), dtype=tf.float64)
        d3_ph = tf.placeholder(shape=tuple(), dtype=tf.float64)

        grads_and_vars = []
        for dp, var in zip([d0_ph, d1_ph, d2_ph, d3_ph],
                           bond_params + angle_params):
            grads_and_vars.append((dp, var))

        # param_optimizer = tf.train.AdamOptimizer(0.02)
        # param_optimizer = tf.train.AdamOptimizer(0.1) # unstable
        param_optimizer = tf.train.RMSPropOptimizer(0.1)
        train_op = param_optimizer.apply_gradients(grads_and_vars)
        sess.run(tf.initializers.global_variables())

        # it turns out the force constants don't really matter a whole lot in this case, but the
        # ideal lengths/angles do matter.

        # Use completely different forcefield parameters, changing bond constants and lengths.
        # See if we can recover the original parameters again.
        sess.run([
            tf.assign(bond_params[0], 60),
            tf.assign(bond_params[1], 1.3),
            tf.assign(angle_params[0], 43),
            tf.assign(angle_params[1], 2.1)
        ])

        print("Starting params", sess.run(bond_params + angle_params))

        for epoch in range(10000):

            def sub_optimal_generator():
                x = np.copy(x_opt)
                for step in range(num_steps):
                    dx_val, dxdp_val = sess.run([bad_dx_op, bad_dxdp_op],
                                                feed_dict={x_ph: x})
                    x += dx_val
                    yield np.copy(x), dxdp_val, step  # wip: decouple

            bad_intg.reset(sess)
            rs = ReservoirSampler(sub_optimal_generator(), reservoir_size)
            rs.sample_all()

            bad_ensemble = []
            bad_ensemble_grads = []
            for x, dxdp, t in rs.R:
                bad_ensemble.append(x)
                bad_ensemble_grads.append(dxdp)
            stacked_bad_ensemble = np.stack(bad_ensemble, axis=0)
            stacked_bad_ensemble_grads = np.stack(bad_ensemble_grads, axis=0)

            # compute ensemble's average angle and bond length
            bad_ensemble_ph = tf.placeholder(shape=(reservoir_size, num_atoms,
                                                    3),
                                             dtype=np.float64)

            ref_d2ij_op = observable.sorted_squared_distances(bad_ensemble_ph)

            # b1, bnp1, bbad_ensemble_ph1 = generate_sub_optimal_bad_ensemble()
            loss_op = tf.reduce_sum(tf.pow(a1 - ref_d2ij_op,
                                           2)) / reservoir_size  # 0.003
            dLdx_op = tf.gradients(loss_op, bad_ensemble_ph)
            loss, dLdx_val = sess.run([loss_op, dLdx_op],
                                      feed_dict={
                                          ensemble_ph1: inp1,
                                          bad_ensemble_ph: stacked_bad_ensemble
                                      })  # MSE 12.953122852970827

            dLdx_dxdp = np.multiply(np.expand_dims(dLdx_val[0], 1),
                                    stacked_bad_ensemble_grads)
            reduced_dLdp = np.sum(dLdx_dxdp, axis=tuple([0, 2, 3]))

            sess.run(train_op,
                     feed_dict={
                         d0_ph: reduced_dLdp[0],
                         d1_ph: reduced_dLdp[1],
                         d2_ph: reduced_dLdp[2],
                         d3_ph: reduced_dLdp[3],
                     })

            if loss < mutual_MSE * 5:
                # succesfully converged (should take about 600 epochs)
                return

            print("loss", loss, "epoch", epoch, "current params",
                  sess.run(bond_params + angle_params))

        assert 0
Exemplo n.º 4
0
def test_mol(smiles):

    nrgs1, offsets1, intg1, context1, init_x_1, total_params_1 = initialize_system(
        dt=0.001,
        temperature=20,
        forcefield_file='forcefield/smirnoff99Frosst.offxml')

    # generate the observable
    print("generating observable")
    ksize = 500
    confs1, _ = run_once(nrgs1, context1, intg1, init_x_1, 40000,
                         total_params_1, ksize)
    x1 = tf.convert_to_tensor(confs1)
    obs1_rij = observable.sorted_squared_distances(x1)

    # train this secondary system
    print("starting training...")
    bond_learning_rate = np.array([[0.1, 0.0001]])
    angle_learning_rate = np.array([[0.01, 0.001]])
    torsion_learning_rate = np.array([[0.01, 0.001, 0.0]])
    lj_learning_rate = np.array([[0.000, 0.000]])

    nrgs0, offsets0, intg0, context0, init_x_0, total_params_0 = initialize_system(
        dt=0.001,
        temperature=20,
        forcefield_file='forcefield/smirnoff99Frosst_perturbed.offxml')

    for epoch in range(5000):

        print("starting epoch", epoch)
        confs0, dxdp0 = run_once(nrgs0, context0, intg0, init_x_0, 40000,
                                 total_params_0, ksize)
        x0 = tf.convert_to_tensor(confs0)
        obs0_rij = observable.sorted_squared_distances(x0)
        loss = tf.sqrt(tf.reduce_sum(tf.pow(obs0_rij - obs1_rij, 2)) /
                       ksize)  # RMSE
        x0_grads = tf.gradients(loss, x0)[0]

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        sess = tf.Session()
        np_loss, x0g = sess.run([loss, x0_grads])
        # np_loss = sess.run(loss)

        print("------------------LOSS", np_loss)
        # print("x0g shape", x0g.shape)
        # assert 0
        x0g = np.expand_dims(x0g, 1)  # [B, 1, N, 3]
        res = np.multiply(x0g, dxdp0)  # dL/dx * dx/dp [B, P, N, 3]

        dLdp = np.sum(res, axis=(0, 2, 3))

        for dparams, nrg in zip(np.split(dLdp, offsets0)[1:], nrgs0):
            if isinstance(nrg, custom_ops.HarmonicBondGPU_double):
                cp = nrg.get_params()
                dp = bond_learning_rate * dparams.reshape((-1, 2))
                print("BOND PARAMS", cp)
                print("BOND CONSTANTS, LENGTHS", dp)
                nrg.set_params(cp - dp.reshape(-1))
            elif isinstance(nrg, custom_ops.HarmonicAngleGPU_double):
                dp = angle_learning_rate * dparams.reshape((-1, 2))
                print("ANGLE CONSTANTS, ANGLES", dp)
            elif isinstance(nrg, custom_ops.PeriodicTorsionGPU_double):
                dp = torsion_learning_rate * dparams.reshape((-1, 3))
                print("TORSION CONSTANTS, PERIODS, PHASES", dp)
            elif isinstance(nrg, custom_ops.LennardJonesGPU_double):
                dp = lj_learning_rate * dparams.reshape((-1, 2))
                print("LJ SIG, EPS", dp)
            else:
                assert 0

            # nrg.set_params(cp - dp.reshape(-1))
            # nrg.set_params(cp)

    assert 0

    for step in range(num_steps):

        if step % 500 == 0:
            # print(step)
            coords = np.array(intg.get_coordinates()).reshape((-1, 3))
            print(coords)
            center = np.sum(coords, axis=0) / coords.shape[0]

            dto = np.sqrt(np.sum(np.power(center - origin, 2)))
            velocities = np.array(intg.get_velocities()).reshape((-1, 3))
            net_mass = np.sum(masses)
            # nv = np.sum(np.expand_dims(np.array(masses), axis=-1)*velocities, axis=0)
            nv = np.sum(np.expand_dims(np.array(masses), axis=-1) * velocities,
                        axis=0)
            # assert 0
            cc_bond_length = np.sqrt(
                np.sum(np.power(coords[0, :] - coords[1, :], 2)))

            write_xyz(ofs, mol, np.array(coords) * 10)

            dxdp = np.array(intg.get_dxdp()).reshape(
                (total_params, num_atoms, 3))
            amax, amin = np.amax(dxdp), np.amin(dxdp)
            print(step, "\tdto\t", dto, "\tnv\t", nv, "\tcc_bond_length\t",
                  cc_bond_length, "\tamax/amin", amax, "\t", amin)

            segments = np.split(dxdp, offsets)[1:]
            for grads, force in zip(segments, nrgs):
                # print(force)
                if isinstance(force, custom_ops.HarmonicBondGPU_double):
                    grads = grads.reshape((-1, 2, num_atoms, 3))
                    print("Bond Constants:", np.amax(grads[:, 0, :, :]),
                          np.amin(grads[:, 0, :, :]))
                    print("Bond Lengths:", np.amax(grads[:, 1, :, :]),
                          np.amin(grads[:, 1, :, :]))
                    # print(grads[:, 1, :, :])
                elif isinstance(force, custom_ops.HarmonicAngleGPU_double):
                    grads = grads.reshape((-1, 2, num_atoms, 3))
                    print("Angle Constants:", np.amax(grads[:, 0, :, :]),
                          np.amin(grads[:, 0, :, :]))
                    # print(grads[:, 0, :, :])
                    print("Angle Radians:", np.amax(grads[:, 1, :, :]),
                          np.amin(grads[:, 1, :, :]))
                    # print(grads[:, 1, :, :])
                elif isinstance(force, custom_ops.PeriodicTorsionGPU_double):
                    grads = grads.reshape((-1, 3, num_atoms, 3))
                    print("Torsion Constants:", np.amax(grads[:, 0, :, :]),
                          np.amin(grads[:, 0, :, :]))
                    print("Torsion Phase:", np.amax(grads[:, 1, :, :]),
                          np.amin(grads[:, 1, :, :]))
                    print("Torsion Periods:", np.amax(grads[:, 2, :, :]),
                          np.amin(grads[:, 2, :, :]))
                elif isinstance(force, custom_ops.LennardJonesGPU_double):
                    grads = grads.reshape((-1, 2, num_atoms, 3))
                    print("LJ sigma:", np.amax(grads[:, 0, :, :]),
                          np.amin(grads[:, 0, :, :]))
                    print("LJ epsilon:", np.amax(grads[:, 1, :, :]),
                          np.amin(grads[:, 1, :, :]))
                else:
                    assert 0
            if np.any(np.isnan(dxdp)):
                assert 0

        context.step()