Exemplo n.º 1
0
    def post_process(self):

        entropyValue = array(self.entropyValue)
        w = self.modulLen * self.samplerate() / self.blocksize()
        modulentropy = computeModulation(entropyValue, w, False)
        confEntropy = array(modulentropy - self.threshold) / self.threshold
        confEntropy[confEntropy > 1] = 1

        conf = self.new_result(data_mode='value', time_mode='framewise')

        conf.id_metadata.id += '.' + 'confidence'
        conf.id_metadata.name += ' ' + 'Confidence'

        conf.data_object.value = confEntropy
        self.add_result(conf)

        # Binary Entropy
        binaryEntropy = modulentropy > self.threshold
        binaryEntropy = binary_opening(binaryEntropy,
                                       [1] * (self.smoothLen * 2))

        convert = {False: 0, True: 1}
        label = {0: 'NonSpeech', 1: 'Speech'}
        segList = segmentFromValues(binaryEntropy)

        segs = self.new_result(data_mode='label', time_mode='segment')
        segs.id_metadata.id += '.' + 'segments'
        segs.id_metadata.name += ' ' + 'Segments'

        segs.data_object.label_metadata.label = label

        segs.data_object.label = [convert[s[2]] for s in segList]
        segs.data_object.time = [
            (float(s[0]) * self.blocksize() / self.samplerate())
            for s in segList
        ]
        segs.data_object.duration = [
            (float(s[1] - s[0] + 1) * self.blocksize() / self.samplerate())
            for s in segList
        ]

        self.add_result(segs)

        return
Exemplo n.º 2
0
    def post_process(self):

        entropyValue = array(self.entropyValue)
        w = self.modulLen * self.samplerate() / self.blocksize()
        modulentropy = computeModulation(entropyValue, w, False)
        confEntropy = array(modulentropy - self.threshold) / self.threshold
        confEntropy[confEntropy > 1] = 1

        conf = self.new_result(data_mode='value', time_mode='framewise')

        conf.id_metadata.id += '.' + 'confidence'
        conf.id_metadata.name += ' ' + 'Confidence'

        conf.data_object.value = confEntropy
        self.process_pipe.results.add(conf)

        # Binary Entropy
        binaryEntropy = modulentropy > self.threshold
        binaryEntropy = binary_opening(
            binaryEntropy, [1] * (self.smoothLen * 2))

        convert = {False: 0, True: 1}
        label = {0: 'NonSpeech', 1: 'Speech'}
        segList = segmentFromValues(binaryEntropy)

        segs = self.new_result(data_mode='label', time_mode='segment')
        segs.id_metadata.id += '.' + 'segments'
        segs.id_metadata.name += ' ' + 'Segments'

        segs.label_metadata.label = label

        segs.data_object.label = [convert[s[2]] for s in segList]
        segs.data_object.time = [(float(s[0]) * self.blocksize() /
                                 self.samplerate())
                                 for s in segList]
        segs.data_object.duration = [(float(s[1] - s[0] + 1) * self.blocksize() /
                                     self.samplerate())
                                     for s in segList]

        self.process_pipe.results.add(segs)

        return
Exemplo n.º 3
0
    def post_process(self):
        '''

        '''
        # Creation of the pass-band filter
        Wo = self.frequency_center / self.samplerate()
        Wn = [Wo - (self.frequency_width / 2) / self.samplerate(),
              Wo + (self.frequency_width / 2) / self.samplerate()]
        num = firwin(self.orderFilter, Wn, pass_zero=False)

        # Energy on the frequency range
        self.energy4hz = array(self.energy4hz)
        energy = lfilter(num, 1, self.energy4hz.T, 0)
        energy = sum(energy)

        # Normalization
        if self.normalizeEnergy and energy.any():
            energy = energy / mean(energy)

        # Energy Modulation
        frameLenModulation = int(
            self.modulLen * self.samplerate() / self.blocksize())
        modEnergyValue = computeModulation(energy, frameLenModulation, True)

        # Confidence Index
        conf = array(modEnergyValue - self.threshold) / self.threshold
        conf[conf > 1] = 1

        modEnergy = self.new_result(data_mode='value', time_mode='framewise')
        modEnergy.id_metadata.id += '.' + 'energy_confidence'
        modEnergy.id_metadata.name += ' ' + 'Energy Confidence'

        modEnergy.data_object.value = conf

        self.process_pipe.results.add(modEnergy)

        # Segment
        convert = {False: 0, True: 1}
        label = {0: 'nonSpeech', 1: 'Speech'}

        segList = segmentFromValues(modEnergyValue > self.threshold)
        # Hint : Median filtering could imrove smoothness of the result
        # from scipy.signal import medfilt
        # segList = segmentFromValues(medfilt(modEnergyValue > self.threshold, 31))

        segs = self.new_result(data_mode='label', time_mode='segment')
        segs.id_metadata.id += '.' + 'segments'
        segs.id_metadata.name += ' ' + 'Segments'

        segs.label_metadata.label = label

        segs.data_object.label = [convert[s[2]] for s in segList]
        segs.data_object.time = [(float(s[0]) * self.blocksize() /
                                 self.samplerate())
                                 for s in segList]
        segs.data_object.duration = [(float(s[1]-s[0]+1) * self.blocksize() /
                                     self.samplerate())
                                     for s in segList]

        self.process_pipe.results.add(segs)

        return