Exemplo n.º 1
0
def test_gpus_many_map():
    N = 2048
    Nproj = N
    Ns = 2048
    filter_type = 'None'
    cor = N//2
    interp_type = 'cubic'

    # init random array
    R = np.float32(np.sin(np.arange(0, Ns*Nproj*N)/float(Ns*Nproj)))
    R = np.reshape(R, [Ns, Nproj, N])
    # input parameters
    tomo = R
    reg_par = 0.001  # *np.max(tomo)
    num_iter = 100
    recon = np.zeros([Ns, N, N], dtype="float32")+1e-3
    method = "em"
    gpu_list = [0, 1, 2, 3]
    # list of available methods for reconstruction
    lpmethods_list = {
        'fbp': lpmethods.fbp,
        'grad': lpmethods.grad,
        'cg': lpmethods.cg,
        'tv': lpmethods.tv,
        'em': lpmethods.em
    }

    ngpus = len(gpu_list)
    # number of slices for simultaneous processing by 1 gpu
    # (depends on gpu memory size, chosen for gpus with >= 8GB memory)
    Nssimgpu = min(int(pow(2, 26)/float(N*N)), int(np.ceil(Ns/float(ngpus))))

    tic()
    # class lprec
    lp = lpTransform.lpTransform(
        N, Nproj, Nssimgpu, filter_type, cor, interp_type)
    # if not fbp, precompute for the forward transform
    lp.precompute(method != 'fbp')
    print("Init time %f" % (toc()))
    # list of slices sets for simultaneous processing b gpus
    ids_list = [None]*int(np.ceil(Ns/float(Nssimgpu)))
    for k in range(0, len(ids_list)):
        ids_list[k] = range(k*Nssimgpu, min(Ns, (k+1)*Nssimgpu))

    tic()
    # init memory for each gpu
    for igpu in range(0, ngpus):
        gpu = gpu_list[igpu]
        # if not fbp, allocate memory for the forward transform arrays
        lp.initcmem(method != 'fbp', gpu)

    # run reconstruciton on many gpus
    with cf.ThreadPoolExecutor(ngpus) as e:
        shift = 0
        for reconi in e.map(partial(lpmultigpu, lp, lpmethods_list[method], recon, tomo, num_iter, reg_par, gpu_list), ids_list):
            recon[np.arange(0, reconi.shape[0])+shift] = reconi
            shift += reconi.shape[0]
    print("Rec time %f" % (toc()))
Exemplo n.º 2
0
def task_gen_photo_imagepath(root, query):
    print('Get photo ids.');
    db_helper = DBHelper();
    db_helper.init(root);

    photo_dao = PhotoDao(db_helper);

    tic();
    photo_ids = photo_dao.getClassPhotoIds(query, ''.join([query]));
    toc();

    print('Get photo path.');
    imagepaths = get_photo_imagepath(root, query, photo_ids)

    output_path = ''.join([db_helper.datasetDir, '/', query, '_imagepath.txt']);
    file_io = FileIO();
    file_io.write_strings_to_file(imagepaths, output_path);
            h01 = psi1
            h02 = psi2

            for k in range(niter):
                # registration
                tic()

                flow = dslv.registration_flow_batch(psi1,
                                                    data,
                                                    mmin,
                                                    mmax,
                                                    flow.copy(),
                                                    pars,
                                                    nproc=42)
                t1 = toc()
                tic()
                # deformation subproblem
                psi1 = dslv.cg_deform(data,
                                      psi1,
                                      flow,
                                      4,
                                      tslv.fwd_lam(u, theta) + lamd1 / rho1,
                                      rho1,
                                      nproc=42)
                t2 = toc()

                psi2 = tslv.solve_reg(u, lamd2, rho2, alpha)

                # tomo subproblem
                tic()
Exemplo n.º 4
0
        #   u, psi, lamd, flow = interpdense(u,psi,lamd,flow)

        # optical flow parameters
        pars = [0.5, 1, w[il], 4, 5, 1.1, 4]
        with tc.SolverTomo(theta, ntheta, nz, ne, pnz,
                           center / pow(2, binning), ngpus) as tslv:
            with dc.SolverDeform(ntheta, nz, n, ptheta) as dslv:
                rho = 0.5
                h0 = psi
                for k in range(niter[il]):
                    # registration
                    # print(np.linalg.norm(psi-data))
                    tic()
                    flow = dslv.registration_flow_batch(
                        psi, data, mmin, mmax, flow.copy(), pars, 40)
                    print(toc())
                    # Tpsi = dslv.apply_flow_gpu_batch(psi, flow)
                    # print(np.linalg.norm(Tpsi-data))

                    # deformation subproblem
                    tic()
                    psi = dslv.cg_deform_gpu_batch(
                        data, psi, flow, 4,
                        unpad(tslv.fwd_tomo_batch(u), ne, n) + lamd / rho, rho)
                    print(toc())

                    # tomo subproblem
                    tic()
                    u = tslv.cg_tomo_batch(pad(psi - lamd / rho, ne, n), u, 4)
                    print(toc())
                    h = unpad(tslv.fwd_tomo_batch(u), ne, n)
Exemplo n.º 5
0
def streaming():
    """
	Main computational function, take data from pvdata ('2bmbSP1:Pva1:Image'),
	reconstruct orthogonal slices and write the result to pvrec ('AdImage')
	"""

    ##### init pvs ######
    # init ca pvs
    chscanDelta = pva.Channel('2bma:PSOFly2:scanDelta', pva.CA)
    chrotangle = pva.Channel('2bma:m82', pva.CA)
    chrotangleset = pva.Channel('2bma:m82.SET', pva.CA)
    chrotanglestop = pva.Channel('2bma:m82.STOP', pva.CA)
    chStreamX = pva.Channel('2bmS1:StreamX', pva.CA)
    chStreamY = pva.Channel('2bmS1:StreamY', pva.CA)
    chStreamZ = pva.Channel('2bmS1:StreamZ', pva.CA)
    # init pva streaming pv for the detector
    chdata = pva.Channel('2bmbSP1:Pva1:Image')
    pvdata = chdata.get('')
    # init pva streaming pv for reconstrucion with coping dictionary from pvdata
    pvdict = pvdata.getStructureDict()
    pvrec = pva.PvObject(pvdict)
    # take dimensions
    n = pvdata['dimension'][0]['size']
    nz = pvdata['dimension'][1]['size']
    # set dimensions for reconstruction
    pvrec['dimension'] = [{
        'size': 3 * n,
        'fullSize': 3 * n,
        'binning': 1
    }, {
        'size': n,
        'fullSize': n,
        'binning': 1
    }]

    ##### run server for reconstruction pv #####
    s = pva.PvaServer('AdImage', pvrec)

    ##### procedures before running fly #######

    # 0) form circular buffer, whenever the angle goes higher than 180
    # than corresponding projection is replacing the first one
    scanDelta = chscanDelta.get('')['value']
    ntheta = np.int(180 / scanDelta + 0.5)
    databuffer = np.zeros([ntheta, nz * n], dtype='uint8')
    thetabuffer = np.zeros(ntheta, dtype='float32')
    # 1) stop rotation, replace rotation stage angle to a value in [0,360)
    chrotanglestop.put(1)
    time.sleep(3)
    rotangle = chrotangle.get('')['value']
    chrotangleset.put(1)
    chrotangle.put(rotangle - rotangle // 360 * 360)
    chrotangleset.put(0)
    # 2) take flat field
    flat = takeflat(chdata)
    firstid = chdata.get('')['uniqueId']
    # 3) create solver class on GPU, and copy flat field to gpu
    slv = OrthoRec(ntheta, n, nz)
    slv.set_flat(flat)
    # 4) allocate memory for result slices
    recall = np.zeros([n, 3 * n], dtype='float32')

    # 5) start monitoring the detector pv for data collection

    def addProjection(pv):
        with mrwlock.w_locked():
            curid = pv['uniqueId']
            databuffer[np.mod(curid, ntheta)] = pv['value'][0]['ubyteValue']
            thetabuffer[np.mod(curid, ntheta)] = (curid - firstid) * scanDelta
            #print(firstid, curid)

    chdata.monitor(addProjection, '')

    ##### start acquisition #######
    start_fly()

    ##### streaming reconstruction ######
    while (True):  # infinite loop over angular partitions
        with mrwlock.r_locked():  # lock buffer before reading
            datap = databuffer.copy()
            thetap = thetabuffer.copy()

        # take 3 ortho slices ids
        idx = chStreamX.get('')['value']
        idy = chStreamY.get('')['value']
        idz = chStreamZ.get('')['value']
        # reconstruct on GPU
        tic()
        recx, recy, recz = slv.rec_ortho(datap, thetap * np.pi / 180, n // 2,
                                         idx, idy, idz)
        print('rec time:', toc())

        # concatenate (supposing nz<n)
        recall[:nz, :n] = recx
        recall[:nz, n:2 * n] = recy
        recall[:, 2 * n:] = recz
        # write to pv
        pvrec['value'] = ({'floatValue': recall.flatten()}, )
        # reconstruction rate limit
        time.sleep(0.1)