def get_model(cfg):
    if cfg.base == "timm":
        if cfg.model_name not in list_models(pretrained=cfg.pretrained):
            print(list_models(pretrained=cfg.pretrained))
            assert True, "Not Found Model: {}".format(cfg.model_name)
        net = create_model(
            model_name=cfg.model_name,
            pretrained=cfg.pretrained,
            num_classes=cfg.num_classes,
            in_chans=cfg.in_chans,
        )
        return net
    else:
        assert True, "Not Found Model Base: {}".format(cfg.base)
Exemplo n.º 2
0
    def __init__(self, hparams):
        super().__init__()

        model_names = sorted(name for name in models.__dict__
                             if name.islower() and not name.startswith("__")
                             and callable(models.__dict__[name]))

        local_model_names = sorted(
            name for name in local_models.__dict__
            if name.islower() and not name.startswith("__")
            and callable(local_models.__dict__[name]))

        timm_model_names = timm_model_names = [
            'timm_' + x for x in timm.list_models()
        ]

        valid_models = model_names + local_model_names + timm_model_names

        self.hparams = vars(hparams) if type(hparams) is not dict else hparams

        if self.hparams['act_func'] == 'swish':
            self.act_funct = Swish()
        elif self.hparams['act_func'] == 'mish':
            self.act_funct = Mish()
        elif self.hparams['act_func'] == 'relu':
            self.act_funct = nn.ReLU(inplace=True)

        # initiate model
        print("=> creating new model '{}'".format(self.hparams['model']))
        if self.hparams['model'] in model_names:
            cv_model = models.__dict__[self.hparams['model']](
                pretrained=False, num_classes=self.hparams['num_classes'])
        elif self.hparams['model'] in local_model_names:
            cv_model = local_models.__dict__[self.hparams['model']](
                pretrained=False,
                activation=self.act_funct,
                num_classes=self.hparams['num_classes'])
        elif self.hparams['model'] in timm_model_names:
            # we need this as timm overlaps with other model names sometimes
            timm_name = self.hparams['model'][5:]
            cv_model = timm.create_model(
                timm_name,
                pretrained=False,
                num_classes=self.hparams['num_classes'])

        if self.hparams['model'] == 'inception_v3':
            cv_model.aux_logits = False

        self.model = cv_model
        self.criterion = nn.CrossEntropyLoss()

        self.save_hyperparameters()

        self.tr_accuracy = pl.metrics.Accuracy()
        self.vl_accuracy = pl.metrics.Accuracy()
        self.test_accuracy = pl.metrics.Accuracy()

        # for tensorboard graph logger
        #self.example_input_array = torch.rand((self.input_dim))
        self.example_input_array = torch.rand([1, 3, 224, 224])
Exemplo n.º 3
0
def get_model(args):
    total_names = ['efficientnet-b' + str(i) for i in range(8)
                   ] + pretrainedmodels.model_names + timm.list_models()
    if not args['model_name'] in total_names:
        print('Nope! Available models are:', total_names)

    # Load from pretrained first
    if 'efficientnet' in args['model_name']:
        try:
            backbone = EfficientNet.from_pretrained(args['model_name'], 10)
        except:
            print('efficientnet-bx x~[0-7] please')
            raise NotImplementedError
        num_features = backbone._fc.weight.shape[1]
        backbone._fc = nn.Sequential()
    elif args['model_name'] in pretrainedmodels.model_names:
        backbone = pretrainedmodels.__dict__[args['model_name']](
            pretrained='imagenet')
        num_features = backbone.last_linear.weight.shape[1]
        backbone.last_linear = nn.Sequential()
    else:
        backbone = timm.create_model(args['model_name'], pretrained=True)
        for child_name, child in list(backbone.named_children())[::-1]:
            if isinstance(child, nn.Linear):
                num_features = child.weight.shape[1]
                setattr(backbone, child_name, nn.Sequential())
                break
    model = add_tail(backbone, num_features)
    if args['mish'] == 1:
        to_mish(model)
    return model
Exemplo n.º 4
0
    def __init__(
        self,
        architecture: str,
        dropout_rate: float = 0.0,
        global_pool: str = "avg",
        num_classes: int = 102,
        batch_size: int = 64,
        optimizer_config: DictConfig = DEFAULT_OPTIMIZER,
        lr_scheduler_config: DictConfig = None,
        pretrained: bool = True,
    ):
        super().__init__()
        self.save_hyperparameters()
        self.optimizer_config = optimizer_config
        self.lr_scheduler_config = lr_scheduler_config

        # sanity check values
        pool_options = {"avg", "max", "avgmax", "avgmaxc"}
        model_options = timm.list_models(pretrained=True)
        assert global_pool in pool_options, f"global_pool must be one of: {pool_options}"
        assert architecture in model_options, "model architecture not recognized"

        # define training objects
        self.network = timm.create_model(
            architecture,
            pretrained=pretrained,
            num_classes=num_classes,
            drop_rate=dropout_rate,
            global_pool=global_pool,
        )
        self.criterion = nn.CrossEntropyLoss()
        self.accuracy_metric = pl.metrics.Accuracy()
Exemplo n.º 5
0
def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-ds",
        "--dataset",
        type=str,
        default='cifar10',
        choices=['cifar10', 'cifar100'],
        help="dataset name in torchvision classificaion dataset")
    parser.add_argument("-ep", "--epochs", type=int, default=10)
    parser.add_argument("-bs", "--batch_size", type=int, default=32)
    parser.add_argument("-lr", "--learning_rate", type=float, default=3e-4)
    parser.add_argument("-wd", "--weight_decay", type=float, default=0)
    parser.add_argument("-sd",
                        "--scheduler",
                        type=str,
                        default="",
                        choices=["", "step", "cosine"])
    parser.add_argument("-seed", "--seed", type=int, default=2020)
    parser.add_argument("-md",
                        "--model",
                        type=str,
                        default="efficientnet_b0",
                        choices=timm.list_models(),
                        help="model name in timm models list")
    parser.add_argument("-wt",
                        "--warmup_type",
                        type=str,
                        default="",
                        choices=["", "linear", "exponential", 'radam'])
    parser.add_argument("-ws", "--warmup_step", type=float, default=0.0)
    parser.add_argument(
        "-opt",
        "--optimizer",
        type=str,
        default='adam',
        choices=['adam', 'adamw', 'rmsprop', 'sgd', 'radam', 'adamp'])
    parser.add_argument(
        "-rt",
        "--repeat_times",
        type=int,
        default=1,
        help=
        "how many times of training and testing will be repeated given a group of hyperparameters"
    )
    args = parser.parse_args()

    dataset_dict = {'cifar10': CIFAR10, 'cifar100': CIFAR100}
    opt_dict = {
        'adam': Adam,
        'adamw': AdamW,
        'rmsprop': RMSprop,
        'sgd': SGD,
        'radam': RAdam,
        'adamp': AdamP
    }
    args.dataset = dataset_dict[args.dataset]
    args.optimizer = opt_dict[args.optimizer]
    return args
Exemplo n.º 6
0
 def check_backbone(self, backbone):
     model_list = timm.list_models()
     if backbone not in model_list:
         closest_matches = difflib.get_close_matches(backbone,
                                                     model_list,
                                                     n=10)
         raise Exception(
             f"Backbone not in list {model_list}\nClosest matches to {backbone} are: {closest_matches}"
         )
Exemplo n.º 7
0
def register_timm_backbones(register: FlashRegistry):
    if _TIMM_AVAILABLE:
        for model_name in timm.list_models():

            if model_name in TORCHVISION_MODELS:
                continue

            register(
                fn=catch_url_error(partial(_fn_timm, model_name)),
                name=model_name,
                namespace="vision",
                package="timm",
                providers=_TIMM,
            )
Exemplo n.º 8
0
def build_multi_predictor(
    cfg,
    flags: Flags,
    device: torch.device,
    in_channels: int,
    target_scale: Optional[torch.Tensor] = None,
    num_modes: int = 3,
) -> nn.Module:
    model_name = flags.model_name
    print("model_name", model_name, "model_kwargs", flags.model_kwargs, "num_modes", num_modes)
    if model_name == "resnet18":
        print("Building LyftMultiModel")
        base_model = LyftMultiModel(cfg, num_modes=num_modes, in_channels=in_channels)
    elif "efficientnet" in model_name:
        print("Building EfficientNetMulti")
        base_model = EfficientNetMulti(
            cfg, num_modes=num_modes, model_name=model_name, in_channels=in_channels, **flags.model_kwargs)
    elif "resnest" in model_name:
        print("Building ResNeStMulti")
        base_model = ResNeStMulti(
            cfg, num_modes=num_modes, model_name=model_name, in_channels=in_channels, **flags.model_kwargs)
    elif model_name in pretrainedmodels.__dict__.keys():
        print("Building PretrainedCNNMulti")
        base_model = PretrainedCNNMulti(
            cfg, num_modes=num_modes, model_name=model_name, in_channels=in_channels, **flags.model_kwargs)
    elif model_name in timm.list_models():
        print("Building TimmMulti")
        base_model = TimmMulti(
            cfg, in_channels=in_channels, num_modes=num_modes, backbone=model_name, **flags.model_kwargs
        )
    else:
        raise ValueError(f"[ERROR] Unexpected value model_name={model_name}")
    predictor = LyftMultiModelPredictor(base_model, cfg, num_modes=num_modes, target_scale=target_scale)

    # --- Forward once to initialize lazy params ---
    bs = 2
    height, width = cfg["raster_params"]["raster_size"]
    in_channels = predictor.in_channels
    x = torch.rand((bs, in_channels, height, width), dtype=torch.float32).to(device)
    predictor.to(device)
    if flags.feat_mode == "agent_type":
        feat_channels = flags.model_kwargs["feat_channels"]
        x_feat = torch.rand((bs, feat_channels), dtype=torch.float32).to(device)
        predictor(x, x_feat)
    else:
        predictor(x)
    # --- Done ---

    return predictor
    def generate_model(self, model_name: str, in_chans: int):

        if isinstance(model_name, str):
            model_enum = ModelsAvailable[model_name.lower()]

        if model_enum.value in timm.list_models(pretrained=True):
            extras = dict(in_chans=in_chans)
            self.model = timm.create_model(model_enum.value,
                                           pretrained=True,
                                           num_classes=10,
                                           **extras)
        elif model_enum == ModelsAvailable.alexnet:
            self.model = AlexNet(in_chans=in_chans)
        elif model_enum == ModelsAvailable.googlenet:
            self.model = GoogleNet(in_chans=in_chans)
Exemplo n.º 10
0
def _get_backbone_model(project_parameters):
    if project_parameters.backbone_model in timm.list_models():
        backbone_model = timm.create_model(
            model_name=project_parameters.backbone_model,
            pretrained=True,
            num_classes=project_parameters.num_classes,
            in_chans=1)
    elif '.py' in project_parameters.backbone_model:
        backbone_model = _get_backbone_model_from_file(
            filepath=project_parameters.backbone_model,
            num_classes=project_parameters.num_classes)
    else:
        assert False, 'please check the backbone model. the backbone model: {}'.format(
            project_parameters.backbone_model)
    return backbone_model
Exemplo n.º 11
0
def build_backbone_from_cfg(config) -> Tuple[torch.nn.Module, int]:
    args = config.copy()
    backbone_type_name = args.pop('type')

    if hasattr(Backbones, backbone_type_name):
        backbone = getattr(Backbones, backbone_type_name)(**args)
    elif backbone_type_name in pretrainedmodels.__dict__:
        backbone = pretrainedmodels.__dict__[backbone_type_name](**args)
        backbone.forward = backbone.features
    elif backbone_type_name in timm.list_models():
        backbone = timm.create_model(backbone_type_name, **args)
        backbone.forward = backbone.forward_features
    elif hasattr(segmentation_models_pytorch, backbone_type_name):
        backbone = getattr(segmentation_models_pytorch,
                           backbone_type_name)(**args)
    else:
        assert False, f'{backbone_type_name} not found in backbones factory'

    return backbone
Exemplo n.º 12
0
def get_model(config):
    all_model_list = [f[:-3] for f in os.listdir(os.path.dirname(__file__))]

    if 'timm_' in config.model_name:
        print(f"Using pretrained timm model {config.model_name}")
        from .timm_created_models import Model
        timm_all_pretrained_model_names = timm.list_models(pretrained=True)
        model_name = config.model_name[5:]
        assert model_name in timm_all_pretrained_model_names, "sry, this model is not in timm pretrained model list"
        model = Model(model_name, pretrained=config.timm_pretrained)

    elif config.model_name in all_model_list:
        print(f"Using model {config.model_name}")
        module = importlib.import_module(f".{config.model_name}",
                                         package="models")
        model = module.Model(config)
        # raise NotImplementedError("Please define your own model here!")

    else:
        raise NotImplementedError(
            f"Not find a proper model={config.model_name}! Please check your configs file."
        )
    return model
Exemplo n.º 13
0
def build_backbone_from_cfg(config) -> Tuple[torch.nn.Module, int]:
    args = config.copy()
    backbone_type_name = args.pop('type')

    if hasattr(Backbones, backbone_type_name):
        backbone = getattr(Backbones, backbone_type_name)(**args)
        output_channels = backbone.output_channels
    elif backbone_type_name in pretrainedmodels.__dict__:
        backbone = pretrainedmodels.__dict__[backbone_type_name](**args)
        if 'squeezenet' in backbone_type_name:
            backbone = backbone.features
            output_channels = 512
        else:
            backbone.forward = backbone.features
            output_channels = backbone.last_linear.in_features
    elif backbone_type_name in timm.list_models():
        backbone = timm.create_model(backbone_type_name, **args)
        backbone.forward = backbone.forward_features
        output_channels = backbone.classifier.in_features
    else:
        assert False, f'{backbone_type_name} not found in backbones factory'

    return backbone, output_channels
Exemplo n.º 14
0
def _get_supported_models():
    try:
        import mxnet as _mxnet
    except ImportError:
        _mxnet = None
    if _mxnet is not None:
        from gluoncv.model_zoo import get_model_list
        all_models = get_model_list()
        blacklist = [
            'ssd', 'faster_rcnn', 'mask_rcnn', 'fcn', 'deeplab', 'psp',
            'icnet', 'fastscnn', 'danet', 'yolo', 'pose', 'center_net',
            'siamrpn', 'monodepth', 'ucf101', 'kinetics', 'voc', 'coco',
            'citys', 'mhpv1', 'ade', 'hmdb51', 'sthsth', 'otb'
        ]
        cls_models = [
            m for m in all_models if not any(x in m for x in blacklist)
        ]
    else:
        cls_models = []
    # add timm backend supported models
    try:
        import torch as _torch
    except ImportError:
        _torch = None
    try:
        import timm as _timm
    except ImportError:
        _timm = None
    if _timm is not None:
        cls_models += list(_timm.list_models())
    elif _torch is None:
        logger.warning('timm installed but torch is required to enable it.')
    else:
        logger.warning(
            'cannot import timm, possibly due to missing torchvision')
    return cls_models
Exemplo n.º 15
0
 def __init__(self, name="mobilenetv2_100",num_classes=21,pretrained="",
              pretrained_backbone=True,sc=False,filter_multiplier=1.0):
     super(Deeplab3P,self).__init__()
     output_stride = 16
     num_filters = int(256*filter_multiplier)
     num_low_filters = int(48*filter_multiplier)
     try:
         self.backbone=timm.create_model(name, features_only=True,
                                         output_stride=output_stride, out_indices=(1, 4),pretrained=pretrained_backbone and pretrained =="")
     except RuntimeError:
         print("no model")
         print(timm.list_models())
         raise RuntimeError()
     channels=self.backbone.feature_info.channels()
     self.head16=get_ASSP(channels[1], output_stride,num_filters)
     self.head4=torch.nn.Sequential(
         nn.Conv2d(channels[0], num_low_filters, 1, bias=False),
         nn.BatchNorm2d(num_low_filters),
         nn.ReLU(inplace=True))
     self.decoder= nn.Sequential(
         nn.Conv2d(num_low_filters+num_filters, num_filters, 3, padding=1, bias=False),
         nn.BatchNorm2d(num_filters),
         nn.ReLU(inplace=True),
         nn.Conv2d(num_filters, num_filters, 3, padding=1, bias=False),
         nn.BatchNorm2d(num_filters),
         nn.ReLU(inplace=True),
         nn.Conv2d(num_filters, num_classes, 1)
     )
     if sc:
         self.decoder = convert_to_separable_conv(self.decoder)
     if pretrained != "":
         dic = torch.load(pretrained, map_location='cpu')
         if type(dic)==dict:
             self.load_state_dict(dic['model'])
         else:
             self.load_state_dict(dic)
Exemplo n.º 16
0
def _train_image_classification(args, reporter):
    """
    Parameters
    ----------
    args: <class 'autogluon.utils.edict.EasyDict'>
    """
    tic = time.time()
    try:
        task_id = int(args.task_id)
    except:
        task_id = 0
    problem_type = args.pop('problem_type', MULTICLASS)
    final_fit = args.pop('final_fit', False)
    # train, val data
    train_data = args.pop('train_data')
    val_data = args.pop('val_data')
    # wall clock tick limit
    wall_clock_tick = args.pop('wall_clock_tick')
    log_dir = args.pop('log_dir', os.getcwd())
    # exponential batch size for Int() space batch sizes
    try:
        exp_batch_size = args.pop('exp_batch_size')
    except AttributeError:
        exp_batch_size = False
    if exp_batch_size and 'batch_size' in args:
        args['batch_size'] = 2 ** args['batch_size']
    try:
        task = args.pop('task')
        dataset = args.pop('dataset')
        num_trials = args.pop('num_trials')
    except AttributeError:
        task = None

    # mxnet and torch dispatcher
    dispatcher = None
    torch_model_list = None
    mxnet_model_list = None
    custom_net = None
    if args.get('custom_net', None):
        custom_net = args.get('custom_net')
        if torch and timm:
            if isinstance(custom_net, torch.nn.Module):
                dispatcher = 'torch'
        if mx:
            if isinstance(custom_net, mx.gluon.Block):
                dispatcher = 'mxnet'
    else:
        if torch and timm:
            torch_model_list = timm.list_models()
        if mx:
            mxnet_model_list = list(get_model_list())
        model = args.get('model', None)
        if model:
            # timm model has higher priority
            if torch_model_list and model in torch_model_list:
                dispatcher = 'torch'
            elif mxnet_model_list and model in mxnet_model_list:
                dispatcher = 'mxnet'
            else:
                if not torch_model_list:
                    raise ValueError('Model not found in gluoncv model zoo. Install torch and timm if it supports the model.')
                elif not mxnet_model_list:
                    raise ValueError('Model not found in timm model zoo. Install mxnet if it supports the model.')
                else:
                    raise ValueError('Model not supported because it does not exist in both timm and gluoncv model zoo.')
    assert dispatcher in ('torch', 'mxnet'), 'custom net needs to be of type either torch.nn.Module or mx.gluon.Block'
    args['estimator'] = TorchImageClassificationEstimator if dispatcher=='torch' else ImageClassificationEstimator
    # convert user defined config to nested form
    args = config_to_nested(args)

    if wall_clock_tick < tic and not final_fit:
        return {'traceback': 'timeout', 'args': str(args),
                'time': 0, 'train_acc': -1, 'valid_acc': -1}

    try:
        valid_summary_file = 'fit_summary_img_cls.ag'
        estimator_cls = args.pop('estimator', None)
        assert estimator_cls in (ImageClassificationEstimator, TorchImageClassificationEstimator)
        if final_fit:
            # load from previous dumps
            estimator = None
            if os.path.isdir(log_dir):
                is_valid_dir_fn = lambda d : d.startswith('.trial_') and os.path.isdir(os.path.join(log_dir, d))
                trial_dirs = [d for d in os.listdir(log_dir) if is_valid_dir_fn(d)]
                best_checkpoint = ''
                best_acc = -1
                result = {}
                for dd in trial_dirs:
                    try:
                        with open(os.path.join(log_dir, dd, valid_summary_file), 'r') as f:
                            result = json.load(f)
                            acc = result.get('valid_acc', -1)
                            if acc > best_acc and os.path.isfile(os.path.join(log_dir, dd, _BEST_CHECKPOINT_FILE)):
                                best_checkpoint = os.path.join(log_dir, dd, _BEST_CHECKPOINT_FILE)
                                best_acc = acc
                    except:
                        pass
                if best_checkpoint:
                    estimator = estimator_cls.load(best_checkpoint)
            if estimator is None:
                if wall_clock_tick < tic:
                    result.update({'traceback': 'timeout'})
                else:
                    # unknown error yet, try reproduce it
                    final_fit = False
        if not final_fit:
            # create independent log_dir for each trial
            trial_log_dir = os.path.join(log_dir, '.trial_{}'.format(task_id))
            args['log_dir'] = trial_log_dir
            custom_optimizer = args.pop('custom_optimizer', None)
            estimator = estimator_cls(args, problem_type=problem_type, reporter=reporter,
                                      net=custom_net, optimizer=custom_optimizer)
            # training
            result = estimator.fit(train_data=train_data, val_data=val_data, time_limit=wall_clock_tick-tic)
            with open(os.path.join(trial_log_dir, valid_summary_file), 'w') as f:
                json.dump(result, f)
            # save config and result
            if task is not None:
                trial_log = {}
                trial_log.update(args)
                trial_log.update(result)
                json_str = json.dumps(trial_log)
                time_str = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
                json_file_name = task + '_dataset-' + dataset + '_trials-' + str(num_trials) + '_' + time_str + '.json'
                with open(json_file_name, 'w') as json_file:
                    json_file.write(json_str)
                logging.info('Config and result in this trial have been saved to %s.', json_file_name)
    except:
        import traceback
        return {'traceback': traceback.format_exc(), 'args': str(args),
                'time': time.time() - tic, 'train_acc': -1, 'valid_acc': -1}

    if estimator:
        try:
            result.update({'model_checkpoint': pickle.dumps(estimator)})
        except pickle.PicklingError:
            result.update({'model_checkpoint': estimator})
        result.update({'estimator': estimator_cls})
    return result
Exemplo n.º 17
0
                            paper_arxiv_id='1512.00567'),
    tf_mixnet_l=_attrib(paper_model_name='MixNet-L',
                        paper_arxiv_id='1907.09595'),
    tf_mixnet_m=_attrib(paper_model_name='MixNet-M',
                        paper_arxiv_id='1907.09595'),
    tf_mixnet_s=_attrib(paper_model_name='MixNet-S',
                        paper_arxiv_id='1907.09595'),
    #tv_resnet34=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
    #tv_resnet50=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
    #tv_resnext50_32x4d=_attrib(paper_model_name=, paper_arxiv_id=), # same weights as torchvision
    #wide_resnet50_2=_attrib(paper_model_name=, paper_arxiv_id=),   # same weights as torchvision
    #wide_resnet101_2=_attrib(paper_model_name=, paper_arxiv_id=),  # same weights as torchvision
    xception=_attrib(paper_model_name='Xception', paper_arxiv_id='1610.02357'),
)

model_names = list_models(pretrained=True)

for model_name in model_names:
    if model_name not in model_map:
        print('Skipping %s' % model_name)
        continue

    # create model from name
    model = create_model(model_name, pretrained=True)
    param_count = sum([m.numel() for m in model.parameters()])
    print('Model %s created, param count: %d' % (model_name, param_count))

    # get appropriate transform for model's default pretrained config
    data_config = resolve_data_config(dict(), model=model, verbose=True)
    input_transform = create_transform(**data_config)
Exemplo n.º 18
0
import pytest
import torch

from timm import list_models, create_model


@pytest.mark.timeout(300)
@pytest.mark.parametrize('model_name', list_models())
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    inputs = torch.randn((batch_size, *model.default_cfg['input_size']))
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'
Exemplo n.º 19
0
 def __post_init__(self):
     available_models = timm.list_models(pretrained=True)
     assert self.model in available_models
Exemplo n.º 20
0
    # no need for the fusion performance here
    torch._C._jit_set_profiling_executor(True)
    torch._C._jit_set_profiling_mode(False)

if 'GITHUB_ACTIONS' in os.environ:  # and 'Linux' in platform.system():
    # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
    EXCLUDE_FILTERS = ['*efficientnet_l2*', '*resnext101_32x48d', 'vit_*']
else:
    EXCLUDE_FILTERS = ['vit_*']
MAX_FWD_SIZE = 384
MAX_BWD_SIZE = 128
MAX_FWD_FEAT_SIZE = 448


@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name', list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = model.default_cfg['input_size']
    if any([x > MAX_FWD_SIZE for x in input_size]):
        # cap forward test at max res 448 * 448 to keep resource down
        input_size = tuple([min(x, MAX_FWD_SIZE) for x in input_size])
    inputs = torch.randn((batch_size, *input_size))
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'
Exemplo n.º 21
0
                         pretrained: bool = True) -> Tuple[nn.Module, int]:
            model: nn.Module = getattr(torchvision.models, model_name,
                                       None)(pretrained)
            backbone = nn.Sequential(*model.features, nn.ReLU(inplace=True))
            num_features = model.classifier.in_features
            return backbone, num_features

        IMAGE_CLASSIFIER_BACKBONES(fn=catch_url_error(
            partial(_fn_densenet, model_name)),
                                   name=model_name,
                                   namespace="vision",
                                   package="torchvision",
                                   type="densenet")

if _TIMM_AVAILABLE:
    for model_name in timm.list_models():

        if model_name in TORCHVISION_MODELS:
            continue

        def _fn_timm(
            model_name: str,
            pretrained: bool = True,
            num_classes: int = 0,
            global_pool: str = '',
        ) -> Tuple[nn.Module, int]:
            backbone = timm.create_model(model_name,
                                         pretrained=pretrained,
                                         num_classes=num_classes,
                                         global_pool=global_pool)
            num_features = backbone.num_features
    "densenet161",
    "googlenet",
    "mobilenet_v2",
    "mobilenet_v3_large",
    "mobilenet_v3_small",
    "mnasnet0_5",
    "mnasnet0_75",
    "mnasnet1_0",
    "mnasnet1_3",
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
]

tv_models = set(MODEL_NAMES) - set(timm.list_models())


def make_wrapper_func(wrapper_fn_name, model_name_key):
    @MODEL_WRAPPER_REGISTRY.register(model_name=model_name_key,
                                     dataset_name='imagenet',
                                     task_type='classification')
    def wrapper_func(pretrained=False,
                     progress=True,
                     device="cuda",
                     num_classes=1000):
        model = torchvision.models.__dict__[model_name_key](
            pretrained=pretrained, num_classes=num_classes)
        return model.to(device)

    wrapper_func.__name__ = wrapper_fn_name
Exemplo n.º 23
0
def _train_image_classification(args,
                                train_data,
                                val_data,
                                problem_type,
                                wall_clock_tick,
                                log_dir,
                                reporter=None):
    """
    Parameters
    ----------
    args: <class 'autogluon.utils.edict.EasyDict'>
    """
    tic = time.time()
    args = args.copy()
    try:
        task_id = int(args['task_id'])
    except:
        task_id = 0
    final_fit = args.pop('final_fit', False)
    # exponential batch size for Int() space batch sizes
    exp_batch_size = args.pop('exp_batch_size', False)
    if exp_batch_size and 'batch_size' in args:
        args['batch_size'] = 2 ** args['batch_size']

    # mxnet and torch dispatcher
    dispatcher = None
    torch_model_list = None
    mxnet_model_list = None
    custom_net = None
    if args.get('custom_net', None):
        custom_net = args.get('custom_net')
        if torch and timm:
            if isinstance(custom_net, torch.nn.Module):
                dispatcher = 'torch'
        if mx:
            if isinstance(custom_net, mx.gluon.Block):
                dispatcher = 'mxnet'
    else:
        if torch and timm:
            torch_model_list = timm.list_models()
        if mx:
            mxnet_model_list = list(get_model_list())
        model = args.get('model', None)
        if model:
            # timm model has higher priority
            if torch_model_list and model in torch_model_list:
                dispatcher = 'torch'
            elif mxnet_model_list and model in mxnet_model_list:
                dispatcher = 'mxnet'
            else:
                if not torch_model_list:
                    raise ValueError('Model not found in gluoncv model zoo. Install torch and timm if it supports the model.')
                elif not mxnet_model_list:
                    raise ValueError('Model not found in timm model zoo. Install mxnet if it supports the model.')
                else:
                    raise ValueError('Model not supported because it does not exist in both timm and gluoncv model zoo.')
    assert dispatcher in ('torch', 'mxnet'), 'custom net needs to be of type either torch.nn.Module or mx.gluon.Block'
    if dispatcher == 'mxnet':
        logger.log(30, '=============================================================================\n'
                       'WARNING: Using MXNet models in ImagePredictor is deprecated as of v0.4.0 and may contain various bugs and issues!\n'
                       'In v0.6.0, ImagePredictor will no longer support training MXNet models. Please consider switching to specifying Torch models instead.\n'
                       'Users should ensure they update their code that depends on ImagePredictor when upgrading to future AutoGluon releases.\n'
                       'For more information, refer to this GitHub issue: https://github.com/awslabs/autogluon/issues/1560\n'
                       '=============================================================================\n')

    args['estimator'] = TorchImageClassificationEstimator if dispatcher=='torch' else ImageClassificationEstimator
    # convert user defined config to nested form
    args = config_to_nested(args)

    if wall_clock_tick < tic and not final_fit:
        return {'traceback': 'timeout', 'args': str(args),
                'time': 0, 'train_acc': -1, 'valid_acc': -1}

    try:
        valid_summary_file = 'fit_summary_img_cls.ag'
        estimator_cls = args.pop('estimator', None)
        assert estimator_cls in (ImageClassificationEstimator, TorchImageClassificationEstimator)
        if final_fit:
            # load from previous dumps
            estimator = None
            if os.path.isdir(log_dir):
                is_valid_dir_fn = lambda d : d.startswith('.trial_') and os.path.isdir(os.path.join(log_dir, d))
                trial_dirs = [d for d in os.listdir(log_dir) if is_valid_dir_fn(d)]
                best_checkpoint = ''
                best_acc = -1
                result = {}
                for dd in trial_dirs:
                    try:
                        with open(os.path.join(log_dir, dd, valid_summary_file), 'r') as f:
                            result = json.load(f)
                            acc = result.get('valid_acc', -1)
                            if acc > best_acc and os.path.isfile(os.path.join(log_dir, dd, _BEST_CHECKPOINT_FILE)):
                                best_checkpoint = os.path.join(log_dir, dd, _BEST_CHECKPOINT_FILE)
                                best_acc = acc
                    except:
                        pass
                if best_checkpoint:
                    estimator = estimator_cls.load(best_checkpoint)
            if estimator is None:
                if wall_clock_tick < tic:
                    result.update({'traceback': 'timeout'})
                else:
                    # unknown error yet, try reproduce it
                    final_fit = False
        if not final_fit:
            # create independent log_dir for each trial
            trial_log_dir = os.path.join(log_dir, '.trial_{}'.format(task_id))
            args['log_dir'] = trial_log_dir
            custom_optimizer = args.pop('custom_optimizer', None)
            estimator = estimator_cls(args, problem_type=problem_type, reporter=reporter,
                                      net=custom_net, optimizer=custom_optimizer)
            # training
            result = estimator.fit(train_data=train_data, val_data=val_data, time_limit=wall_clock_tick-tic)
            with open(os.path.join(trial_log_dir, valid_summary_file), 'w') as f:
                json.dump(result, f)
    except:
        import traceback
        return {'traceback': traceback.format_exc(), 'args': str(args),
                'time': time.time() - tic, 'train_acc': -1, 'valid_acc': -1}

    if estimator:
        result.update({'model_checkpoint': estimator})
        result.update({'estimator': estimator_cls})
    return result
from timm import list_models, create_model, set_scriptable

if 'GITHUB_ACTIONS' in os.environ and 'Linux' in platform.system():
    # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
    EXCLUDE_FILTERS = ['*efficientnet_l2*', '*resnext101_32x48d']
else:
    EXCLUDE_FILTERS = []
MAX_FWD_SIZE = 384
MAX_BWD_SIZE = 128
MAX_FWD_FEAT_SIZE = 448


@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name',
                         list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = model.default_cfg['input_size']
    if any([x > MAX_FWD_SIZE for x in input_size]):
        # cap forward test at max res 448 * 448 to keep resource down
        input_size = tuple([min(x, MAX_FWD_SIZE) for x in input_size])
    inputs = torch.randn((batch_size, *input_size))
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'
Exemplo n.º 25
0
# Pytorch Image Model
# https://rwightman.github.io/pytorch-image-models/
import timm
from timm import create_model


class Timm_model(nn.Module):
    def __init__(self, model_name, pretrained=True, out_dim=5):
        super(Timm_model, self).__init__()
        self.base = create_model(model_name, pretrained=pretrained)

        if 'efficientnet' in model_name:
            self.base.classifier = nn.Linear(
                in_features=self.base.classifier.in_features,
                out_features=out_dim)
        elif 'vit' in model_name:
            self.base.head = nn.Linear(in_features=self.base.head.in_features,
                                       out_features=out_dim)
        else:
            self.base.fc = nn.Linear(in_features=self.base.fc.in_features,
                                     out_features=out_dim)

    def forward(self, x):
        return self.base(x)


if __name__ == '__main__':
    # Print Timm Models
    model_names = timm.list_models(pretrained=True)
    print(model_names)
Exemplo n.º 26
0
                                                          2) + " |\n"

    table = l1 + top + l2

    for k in sorted(data.keys()):
        support = "✅".center(
            max_len2 - 3) if data[k]["has_dilation"] else " ".center(max_len2 -
                                                                     2)
        table += "| " + k.ljust(max_len1 - 2) + " | " + support + " |\n"
        table += l1

    return table


if __name__ == "__main__":

    supported_models = {}

    with tqdm(timm.list_models()) as names:
        for name in names:
            try:
                check_features_and_reduction(name)
                has_dilation = has_dilation_support(name)
                supported_models[name] = dict(has_dilation=has_dilation)
            except Exception:
                continue

    table = make_table(supported_models)
    print(table)
    print(f"Total encoders: {len(supported_models.keys())}")
Exemplo n.º 27
0
def get_model_names():
    return sorted(
        name for name in models.__dict__
        if name.islower() and not name.startswith("__")
        and callable(models.__dict__[name])
    ) + timm.list_models()
Exemplo n.º 28
0
    if fixed_input_size:
        return input_size

    if min_input_size:
        if target and max(input_size) > target:
            input_size = min_input_size
    else:
        if target and max(input_size) > target:
            input_size = tuple([min(x, target) for x in input_size])
    return input_size


@pytest.mark.timeout(120)
@pytest.mark.parametrize('model_name',
                         list_models(exclude_filters=EXCLUDE_FILTERS))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = _get_input_size(model=model, target=TARGET_FWD_SIZE)
    if max(input_size) > MAX_FWD_SIZE:
        pytest.skip("Fixed input size model > limit.")
    inputs = torch.randn((batch_size, *input_size))
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'
Exemplo n.º 29
0
    # GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
    EXCLUDE_FILTERS = [
        '*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm',
        '*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*'
    ] + NON_STD_FILTERS
else:
    EXCLUDE_FILTERS = NON_STD_FILTERS

MAX_FWD_SIZE = 384
MAX_BWD_SIZE = 128
MAX_FWD_FEAT_SIZE = 448


@pytest.mark.timeout(120)
@pytest.mark.parametrize(
    'model_name', list_models(exclude_filters=EXCLUDE_FILTERS[:-NUM_NON_STD]))
@pytest.mark.parametrize('batch_size', [1])
def test_model_forward(model_name, batch_size):
    """Run a single forward pass with each model"""
    model = create_model(model_name, pretrained=False)
    model.eval()

    input_size = model.default_cfg['input_size']
    if any([x > MAX_FWD_SIZE for x in input_size]):
        # cap forward test at max res 448 * 448 to keep resource down
        input_size = tuple([min(x, MAX_FWD_SIZE) for x in input_size])
    inputs = torch.randn((batch_size, *input_size))
    outputs = model(inputs)

    assert outputs.shape[0] == batch_size
    assert not torch.isnan(outputs).any(), 'Output included NaNs'
Exemplo n.º 30
0
import torch
from torch import nn
from torch.nn import *
from torch.nn import functional as F
from torchvision import models
from pytorchcv.model_provider import get_model as ptcv_get_model
# from .utils import get_cadene_model
from typing import Optional
from .utils import *
from .triple_attention import *
from losses.arcface import ArcMarginProduct

import timm
from pprint import pprint

model_names = timm.list_models('*resnext*')
print(model_names)


# print(torch.hub.list('zhanghang1989/ResNeSt', force_reload=True))
class Resne_t(nn.Module):
    def __init__(self, model_name='resnest50_fast_1s1x64d', num_class=1):
        super().__init__()
        # self.backbone = timm.create_model(model_name, pretrained=True)
        # self.backbone = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=True)
        # print(self.backbone)
        self.backbone = timm.create_model(model_name, pretrained=True)
        # print(self.backbone)
        # self.in_features = 2048
        self.in_features = self.backbone.fc.in_features
        self.head = Head(self.in_features, num_class, activation='mish')