def load_and_align_data(image_paths, image_size, margin, gpu_memory_fraction):

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    print('Creating networks and loading parameters')
    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)  # noqa: E501
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    nrof_samples = len(image_paths)
    img_list = [None] * nrof_samples
    for i in xrange(nrof_samples):
        print(image_paths[i])
        img = imageio.imread(os.path.expanduser(image_paths[i]))
        img_size = np.asarray(img.shape)[0:2]
        bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet,
                                                    onet, threshold, factor)
        det = np.squeeze(bounding_boxes[0, 0:4])
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(det[0] - margin / 2, 0)
        bb[1] = np.maximum(det[1] - margin / 2, 0)
        bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
        bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
        cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
        aligned = resize(cropped, (image_size, image_size))
        prewhitened = facenet.prewhiten(aligned)
        img_list[i] = prewhitened
    images = np.stack(img_list)
    return images
Exemplo n.º 2
0
def main(input_dir='database',
         output_dir='database_aligned',
         image_size=182,
         margin=44,
         gpu_memory_fraction=1,
         random_order=False):
    sleep(random.random())
    output_dir = os.path.expanduser(output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    cwd = os.getcwd()
    facenet.store_revision_info(cwd, output_dir, ' '.join(sys.argv))
    dataset = facenet.get_dataset(input_dir)

    print('Creating networks and loading parameters')

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        with sess.as_default():
            pnet, rnet, onet = detect_face.create_mtcnn(sess, None)

    minsize = 20  # minimum size of face
    threshold = [0.6, 0.7, 0.7]  # three steps's threshold
    factor = 0.709  # scale factor

    # Add a random key to the filename to allow alignment using multiple processes
    random_key = np.random.randint(0, high=99999)
    bounding_boxes_filename = os.path.join(
        output_dir, 'bounding_boxes_%05d.txt' % random_key)

    with open(bounding_boxes_filename, "w") as text_file:
        nrof_images_total = 0
        nrof_successfully_aligned = 0
        if random_order:
            random.shuffle(dataset)
        for cls in dataset:
            output_class_dir = os.path.join(output_dir, cls.name)
            if not os.path.exists(output_class_dir):
                os.makedirs(output_class_dir)
                if random_order:
                    random.shuffle(cls.image_paths)
            for image_path in cls.image_paths:
                nrof_images_total += 1
                filename = os.path.splitext(os.path.split(image_path)[1])[0]
                output_filename = os.path.join(output_class_dir,
                                               filename + '.png')
                print(image_path)
                if not os.path.exists(output_filename):
                    try:
                        img = imageio.imread(image_path)
                    except (IOError, ValueError, IndexError) as e:
                        errorMessage = '{}: {}'.format(image_path, e)
                        print(errorMessage)
                    else:
                        if img.ndim < 2:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))
                            continue
                        if img.ndim == 2:
                            img = facenet.to_rgb(img)
                        img = img[:, :, 0:3]

                        bounding_boxes, _ = detect_face.detect_face(
                            img, minsize, pnet, rnet, onet, threshold, factor)

                        nrof_faces = bounding_boxes.shape[0]
                        if nrof_faces > 0:
                            det = bounding_boxes[:, 0:4]
                            img_size = np.asarray(img.shape)[0:2]
                            if nrof_faces > 1:
                                bounding_box_size = (det[:, 2] - det[:, 0]) * (
                                    det[:, 3] - det[:, 1])
                                img_center = img_size / 2
                                offsets = np.vstack([
                                    (det[:, 0] + det[:, 2]) / 2 -
                                    img_center[1],
                                    (det[:, 1] + det[:, 3]) / 2 - img_center[0]
                                ])
                                offset_dist_squared = np.sum(
                                    np.power(offsets, 2.0), 0)
                                index = np.argmax(
                                    bounding_box_size - offset_dist_squared *
                                    2.0)  # some extra weight on the centering
                                det = det[index, :]
                            det = np.squeeze(det)
                            bb = np.zeros(4, dtype=np.int32)
                            bb[0] = np.maximum(det[0] - margin / 2, 0)
                            bb[1] = np.maximum(det[1] - margin / 2, 0)
                            bb[2] = np.minimum(det[2] + margin / 2,
                                               img_size[1])
                            bb[3] = np.minimum(det[3] + margin / 2,
                                               img_size[0])
                            cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
                            scaled = resize(cropped, (image_size, image_size),
                                            mode='constant')
                            nrof_successfully_aligned += 1
                            imageio.imwrite(output_filename, scaled)
                            text_file.write(
                                '%s %d %d %d %d\n' %
                                (output_filename, bb[0], bb[1], bb[2], bb[3]))
                        else:
                            print('Unable to align "%s"' % image_path)
                            text_file.write('%s\n' % (output_filename))

    print('Total number of images: %d' % nrof_images_total)
    print('Number of successfully aligned images: %d' %
          nrof_successfully_aligned)